We study the inducement of passive nonlinear sinks in linear vibrating systems. These are substructures that absorb vibrational energy in a one-way, irreversible fashion. The systems considered are composed of strongly coupled, grounded damped linear oscillators with a strongly nonlinear attachment at the end. Applying a complex averaging technique we derive a set of modulation equations that is directly amenable to physical interpretation, and provides insight into the energy pumping phenomenon. For the case of a two DOF system we show that nonlinear energy pumping occurs when a certain frequency of envelope modulation crosses through zero; then the dynamics of the envelope modulation of the motion resemble the dynamics of a forced rigid body. For the case of an impulsively loaded multi-DOF chain with a nonlinear attachment at the end, we show that after some initial transients the response of the nonlinear attachment sets to a motion dominated by a “fast” frequency identical to the lower bound of the propagation zone of the linear chain. This feature reduces the study of energy pumping in the chain to a two DOF equivalent problem. The applications of the energy pumping phenomenon to practical engineering problems are discussed.

1.
Vakakis, A. F., and Gendelman, O., 2001, “Energy ‘Pumping’ in Coupled Mechanical Oscillators II: Resonance Capture,” ASME J. Appl. Mech., (in press).
2.
Arnold, V. I., ed., 1988, Dynamical Systems III, Encyclopaedia of Mathematical Sciences, Vol. 3, Springer Verlag, Berlin and New York.
3.
Morozov, A. D., 1998, Quasi-conservative Systems, Cycles, Resonances and Chaos, Series on Nonlinear Science, Series A, Vol. 30, World Scientific, Singapore.
4.
Gendelman, O., 2001, “Transition of Energy to Nonlinear Localized Mode in a Highly Asymmetric System of Two Oscillators,” Nonlinear Dyn., (in press).
5.
Gendelman, O., Manevitch, L. I., Vakakis, A. F., and M’Closkey, R., 2001, “Energy ‘Pumping’ in Coupled Mechanical Oscillators I: Dynamics of the Underlying Hamiltonian Systems,” ASME J. Appl. Mech., (in press).
6.
Tanaka
,
N.
, and
Kikushima
,
Y.
,
1991
, “
Active Wave Control of a Flexible Beam
,”
JSME Int. J.
,
34
(
2
), pp.
159
167
.
7.
Tanaka
,
N.
, and
Kikushima
,
Y.
,
1999
, “
Optimal Vibration Feedback Control of an Euler-Bernulli Beam: Toward Realization of the Active Sink Method
,”
ASME J. Vibr. Acoust.
,
121
, pp.
174
182
.
8.
Yigit
,
A. S.
, and
Choura
,
S.
,
1995
, “
Vibration Confinement in Flexible Structures via Alteration of Mode Shapes by Using Feedback
,”
J. Sound Vib.
,
179
(
4
), pp.
553
567
.
9.
Choura
,
S. A.
, and
Yigit
,
A. S.
,
1995
, “
Vibration Confinement in Flexible Structures by Distributed Feedback
,”
Comput. Struct.
,
54
(
3
), pp.
531
540
.
10.
Hodges
,
C. H.
,
1982
, “
Confinement of Vibration by Structural Irregularity
,”
J. Sound Vib.
,
82
(
3
), pp.
411
424
.
11.
Pierre
,
C.
, and
Dowell
,
E. H.
,
1987
, “
Localization of Vibrations by Structural Irregularity
,”
J. Sound Vib.
,
114
(
3
), pp.
549
564
.
12.
Photiadis
,
D. M.
,
1992
, “
Anderson Localization of One-dimensional Wave Propagation on a Fluid-loaded Plate
,”
J. Acoust. Soc. Am.
,
91
(
2
), pp.
771
780
.
13.
Vakakis, A. F., Manevitch, L. I., Mikhlin, Yu. V., Pilipchuck, V., Zevin, A., 1996, Normal Modes and Localization in Nonlinear Systems, Wiley Interscience, New York.
14.
Nayfeh, A. H., and Mook, D., 1984, Nonlinear Oscillations, Wiley Interscience, New York.
15.
Nayfeh
,
S. A.
, and
Nayfeh
,
A. H.
,
1994
, “
Energy Transfer from High- to Low-frequency Modes in a Flexible Structure via Modulation
,”
ASME J. Vibr. Acoust.
,
116
, pp.
203
207
.
16.
Mead
,
D. J.
,
1975
, “
Wave Propagation and Natural Normal Modes in Periodic Systems: I. Mono-coupled Systems
,”
J. Sound Vib.
,
40
(
1
), pp.
1
18
.
17.
Vakakis
,
A. F.
,
El-Raheb
,
M.
, and
Cetinkaya
,
C.
,
1994
, “
Free and Forced Dynamics of a Class of Periodic Elastic Systems
,”
J. Sound Vib.
,
172
(
1
), pp.
23
46
.
18.
Visco
,
D. P.
, and
Sen
,
S.
,
1998
, “
Dynamics of an Anharmonic Oscillator that is Harmonically Coupled to a Many-body System and the Notion of an Appropriate Heat Bath
,”
Phys. Rev. E
,
57
(
1
), pp.
224
228
.
19.
Thorp
,
J. S.
,
Seyler
,
C. E.
, and
Phadke
,
A. G.
,
1998
, “
Electromechanical Wave Propagation in Large Electric Power Systems
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
,
45
(
6
), pp.
614
622
.
20.
Ludeke
,
C. A.
, and
Wagner
,
W. S.
,
1968
, “
The Generalized Duffing Equation with Large Damping
,”
Int. J. Non-Linear Mech.
,
3
, pp.
383
395
.
21.
Cap
,
F.
,
1974
, “
Averaging Method for the Solution of Non-linear Differential Equations with Periodic Non-harmonic Functions
,”
Int. J. Non-Linear Mech.
,
9
, pp.
441
450
.
22.
Yuste
,
S. B.
, and
Bejarano
,
J. D.
,
1990
, “
Improvement of a Krylov-Bogoliubov Method that uses Jacobi Elliptic Functions
,”
J. Sound Vib.
,
139
(
1
), pp.
151
163
.
23.
Chen
,
S. H.
, and
Cheung
,
Y. K.
,
1996
, “
An Elliptic Perturbation Method for Certain Strongly Non-linear Oscillators
,”
J. Sound Vib.
,
192
(
2
), pp.
453
464
.
24.
Manevitch, L. I., 2001, “Description of Localized Normal Modes in the Chain of Nonlinear Coupled Oscillators Using Complex Variables,” Nonlinear Dyn., (in press).
25.
Lee
,
K. H.
,
1972
, “
Dynamics of Harmonically Bound Semi-infinite and Infinite Chains with Friction and Applied Forces
,”
J. Math. Phys.
,
13
(
9
), pp.
1312
1315
.
26.
Wang
,
Y. Y.
, and
Lee
,
K. H.
,
1973
, “
Propagation of a Disturbance in a Chain of Interacting Harmonic Oscillators
,”
Am. J. Phys.
,
41
, pp.
51
54
.
27.
Bleistein, N., and Handelsman, R. A., 1986, Asymptotic Expansions of Integrals, Dover publication, New York.
28.
Sen
,
S.
,
Sinkovits
,
R. S.
, and
Chakravarti
,
S.
,
1996
, “
Algebraic Relaxation Laws for Classical Particles in 1D Anharmonic Potentials
,”
Phys. Rev. Lett.
,
77
(
24
), pp.
4855
4869
.
29.
Salenger
,
G.
,
Vakakis
,
A. F.
,
Gendelman
,
O.
,
Manevitch
,
L. I.
, and
Andrianov
,
I.
,
1999
, “
Transitions from Strongly to Weakly Nonlinear Motions of Damped Nonlinear Oscillators
,”
Nonlinear Dyn.
,
20
, pp.
99
114
.
You do not currently have access to this content.