The large amplitude vibration and modal interactions of shallow suspended cable with three-to-three-to-one internal resonances are investigated. The quasistatic assumption and direct approach are used to obtain the condensed suspended cable model and the corresponding modulation equations for the case of primary resonance of the third symmetric in-plane or out-of-plane mode. The equilibrium, periodic, and chaotic solutions of the modulation equations are studied. Moreover, the nonplanar motion and symmetric character of out-of-plane vibration of the shallow suspended cables are investigated by means of numerical simulations. Finally, the role played by the quasistatic assumption, internal resonance, and static configuration in disrupting the symmetry of the out-of-plane vibration is discussed.

1.
Rega
,
G.
, 2004, “
Nonlinear Vibrations of Suspended Cables—Part I: Modeling and Analysis
,”
Appl. Mech. Rev.
0003-6900,
57
, pp.
443
478
.
2.
Rega
,
G.
, 2004, “
Nonlinear Vibrations of Suspended Cables—Part II: Deterministic Phenomena
,”
Appl. Mech. Rev.
0003-6900,
57
, pp.
479
514
.
3.
Lacarbonara
,
W.
,
Paolone
,
A.
, and
Vestroni
,
F.
, 2007, “
Elastodynamics of Nonshallow Suspended Cables: Linear Modal Properties
,”
J. Vibr. Acoust.
0739-3717,
129
, pp.
425
433
.
4.
Lacarbonara
,
W.
,
Paolone
,
A.
, and
Vestroni
,
F.
, 2007, “
Nonlinear Modal Properties of Nonshallow Cables
,”
Int. J. Non-Linear Mech.
0020-7462,
42
, pp.
542
554
.
5.
Lacarbonara
,
W.
, and
Pacitti
,
A.
, 2008, “
Nonlinear Modeling of Cables With Flexural Stiffness
,”
Math. Probl. Eng.
1024-123X,
2008
, ID 370767, pp.
1
21
.
6.
Srinil
,
N.
,
Rega
,
G.
, and
Chucheepsakul
,
S.
, 2007, “
Two-to-One Resonant Multi-Modal Dynamics of Horizontal/Inclined Cables. Part I: Theoretical Formulation and Model Validation
,”
Nonlinear Dyn.
0924-090X,
48
, pp.
231
252
.
7.
Srinil
,
N.
, and
Rega
,
G.
, 2007, “
Two-to-One Resonant Multi-Modal Dynamics of Horizontal/Inclined Cables. Part II: Internal Resonance Activation, Reduced-Order Models and Nonlinear Normal Modes
,”
Nonlinear Dyn.
0924-090X,
48
, pp.
253
274
.
8.
Srinil
,
N.
, and
Rega
,
G.
, 2008, “
Nonlinear Longitudinal/Transversal Modal Interactions in Highly Extensible Suspended Cables
,”
J. Sound Vib.
0022-460X,
310
, pp.
230
242
.
9.
Zhao
,
Y.
, and
Wang
,
L.
, 2006, “
On the Symmetric Modal Interaction of the Suspended Cable: Three-to-One Internal Resonance
,”
J. Sound Vib.
0022-460X,
294
, pp.
1073
1093
.
10.
Wang
,
L.
, and
Zhao
,
Y.
, 2006, “
Nonlinear Interactions and Chaotic Dynamics of Suspended Cables With Three-to-One Internal Resonances
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
7800
7819
.
11.
Wang
,
L.
, and
Zhao
,
Y.
, 2007, “
Non-Linear Planar Dynamics of Suspended Cables Investigated by the Continuation Technique
,”
Eng. Struct.
0141-0296,
29
, pp.
1135
1144
.
12.
Lacarbonara
,
W.
, and
Rega
,
G.
, 2003, “
Resonant Non-Linear Normal Modes. Part II: Activation/Orthogonality Conditions for Shallow Structural Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
38
, pp.
873
887
.
13.
Wang
,
L.
, and
Zhao
,
Y.
, 2009, “
Multiple Internal Resonances and Non-Planar Dynamics of Shallow Suspended Cables to the Harmonic Excitations
,”
J. Sound Vib.
0022-460X,
319
, pp.
1
14
.
14.
Lee
,
C. L.
, and
Perkins
,
N. C.
, 1995, “
Three-Dimensional Oscillations of Suspended Cables Involving Simultaneous Internal Resonances
,”
Nonlinear Dyn.
0924-090X,
8
, pp.
45
63
.
15.
Benedettini
,
F.
,
Rega
,
G.
, and
Alaggio
,
R.
, 1995, “
Non-Linear Oscillations of a Four-Degree-of-Freedom Model of a Suspended Cable Under Multiple Internal Resonance Conditions
,”
J. Sound Vib.
0022-460X,
182
, pp.
775
798
.
16.
Rega
,
G.
,
Lacarbonara
,
W.
,
Nayfeh
,
A. H.
, and
Chin
,
C. -M.
, 1999, “
Multiple Resonances in Suspeneded Cables: Direct Versus Reduced-Order Models
,”
Int. J. Non-Linear Mech.
0020-7462,
34
, pp.
901
924
.
17.
Nayfeh
,
A. H.
,
Arafat
,
H. N.
,
Chin
,
C. -M.
, and
Lacarbonara
,
W.
, 2002, “
Multimode Interactions in Suspended Cables
,”
J. Vib. Control
1077-5463,
8
, pp.
337
387
.
18.
Srinil
,
N.
, and
Rega
,
G.
, 2007, “
The Effects of Kinematic Condensation on Internally Resonant Forced Vibrations of Shallow Horizontal Cables
,”
Int. J. Non-Linear Mech.
0020-7462,
42
, pp.
180
195
.
19.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1997,
Nonlinear Oscillations
,
Wiley-Interscience
,
New York
.
20.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
, 1994,
Applied Nonlinear Dynamics
,
Wiley-Interscience
,
New York
.
You do not currently have access to this content.