This paper presents a finite element formulation for the seismic response of damped structural systems. Damping is obtained using a viscoelastic material, which is characterized by a constitutive law with fractional derivatives. The weighted residue method is applied resulting in a fractional motion equation, which is numerically integrated through an implicit scheme in combination with the constant acceleration Newmark method. An example of application is presented, in which the response of a cantilever beam with free layer damping is analyzed. The material properties are identified from the material experimental characterization, where the parameters of the fractional model were identified by curve fitting. The results of the simulation are compared with the experimental ones, concluding that the tendencies observed in the measurements are reproduced.

References

1.
Housner
,
G. W.
,
Bergman
,
L. A.
,
Caughey
,
T. K.
,
Chassiakos
,
A. G.
,
Claus
,
R. O.
,
Masri
,
S. F.
,
Skelton
,
S. E.
,
Soong
,
T. T.
,
Spencer
,
B. F.
, and
Yao
,
J. T. P.
,
1997
, “
Structural Control: Past, Present and Future
,”
ASCE J. Eng. Mech.
,
123
(
9
), pp.
897
971
.10.1061/(ASCE)0733-9399(1997)123:9(897)
2.
Soong
,
T. T.
, and
Constantinou
,
M. C.
,
1994
,
Passive and Active Structural Vibration Control in Civil Engineering
,
Springer
,
Berlin
.
3.
Soong
,
T. T.
, and
Dargush
,
G. F.
,
1997
,
Passive Energy Dissipation Systems in Structural Engineering
,
Wiley
,
New York
.
4.
Ali
,
H. M.
, and
Abdel-Ghaffar
,
A. M.
,
1995
, “
Modeling the Nonlinear Seismic Behaviour of Cable-Stayed Bridges With Passive Control Bearings
,”
Comput. Struct.
,
54
(
3
), pp.
461
492
.10.1016/0045-7949(94)00353-5
5.
Zhu
,
H.
,
Wen
,
Y.
, and
Iemura
,
H.
,
2001
, “
A Study on Interaction Control for Seismic Response of Parallel Structures
,”
Comput. Struct.
,
79
(
2
), pp.
231
242
.10.1016/S0045-7949(00)00119-X
6.
Madsen
,
L. P. B.
,
Thambiratnam
,
D. P.
, and
Perera
,
N. J.
,
2003
, “
Seismic Response of Building Structures With Dampers in Shear Walls
,”
Comput. Struct.
,
81
(
4
), pp.
239
253
.10.1016/S0045-7949(02)00441-8
7.
Levy
,
R.
, and
Lavan
,
O.
,
2006
, “
Fully Stressed Design of Passive Controllers in Framed Structures for Seismic Loadings
,”
Struct. Multidiscip. Optim.
,
32
(6), pp.
485
498
.10.1007/s00158-005-0558-5
8.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
23
(
6
), pp.
918
925
.10.2514/3.9007
9.
Pritz
,
T.
,
1996
, “
Analysis of Four–Parameter Fractional Derivative Model of Real Solid Materials
,”
J. Sound Vib.
,
195
(
1
), pp.
103
115
.10.1006/jsvi.1996.0406
10.
Lee
,
H. H.
, and
Tsai
,
C. S.
,
1994
, “
Analytical Model of Viscoelastic Dampers for Seismic Mitigation of Structures
,”
Comput. Struct.
,
50
(
1
), pp.
111
121
.10.1016/0045-7949(94)90442-1
11.
Hwang
,
J. S.
, and
Ku
,
S. W.
,
1997
, “
Analytical Modeling of High Damping Rubber Bearings
,”
ASCE J. Struct. Eng.
,
123
(
8
), pp.
1029
1036
.10.1061/(ASCE)0733-9445(1997)123:8(1029)
12.
Hwang
,
J. S.
, and
Wang
,
J. C.
,
1998
, “
Seismic Response Prediction of HDR Bearings Using Fractional Derivative Maxwell Model
,”
Eng. Struct.
,
20
(
9
), pp.
849
856
.10.1016/S0141-0296(98)80005-9
13.
Hwang
,
J. S.
, and
Hsu
,
T. Y.
,
2001
, “
A Fractional Derivative Model to Include the Effect of Ambient Temperature on HRD Bearings
,”
Comput. Struct.
,
23
(
5
), pp.
484
490
.10.1016/S0141-0296(00)00063-8
14.
Agrawal
,
O. P.
,
2001
, “
Stochastic Analysis of Dynamic Systems Containing Fractional Derivatives
,”
J. Sound Vib.
,
247
(
5
), pp.
927
938
.10.1006/jsvi.2001.3682
15.
Rüdinger
,
F.
,
2006
, “
Tuned Mass Damper With Fractional Derivative Damping
,”
Eng. Struct.
,
28
(
13
), pp.
1774
1779
.10.1016/j.engstruct.2006.01.006
16.
Padovan
,
J.
,
1987
, “
Computational Algorithms for FE Formulations Involving Fractional Operators
,”
Comput. Mech.
,
2
(4), pp.
271
287
.10.1007/BF00296422
17.
Cortés
,
F.
, and
Elejabarrieta
,
M. J.
,
2007
, “
Finite Element Formulations for Transient Dynamic Analysis in Structural Systems With Viscoelastic Treatments Containing Fractional Derivative Models
,”
Int. J. Numer. Methods Eng.
,
69
(10), pp.
2173
2195
.10.1002/nme.1840
18.
Cortés
,
F.
, and
Elejabarrieta
,
M. J.
,
2007
, “
Homogenised Finite Element for Transient Dynamic Analysis of Unconstrained Layer Damping Beams Involving Fractional Derivative Models
,”
Comput. Mech.
,
40
(2), pp.
313
324
.10.1007/s00466-006-0101-6
19.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Academic Press
,
New York
.
20.
“Soundown—Peace and Quiet for Architectural, Marine, & Industrial Applications,” 2010, Soundown Corporation, Salem, MA, retrieved on Apr. 4,
2014
, http://www.soundown.com
21.
Kosloff
,
D.
, and
Frazier
,
G. A.
,
1978
, “
Treatment of Hourglass Patterns in Low Order Finite Element Codes
,”
Int. J. Numer. Anal. Methods Geomech.
,
2
(
1
), pp.
57
72
.10.1002/nag.1610020105
22.
“ASM,” 2011, Aerospace Specification Metals, Pompano Beach, FL, retrieved on Apr. 4,
2014
, http://asm.matweb.com
23.
Cortés
,
F.
, and
Elejabarrieta
,
M. J.
,
2007
, “
Viscoelastic Materials Characterisation Using the Seismic Response
,”
Mater. Des.
,
28
(
7
), pp.
2054
2062
.10.1016/j.matdes.2006.05.032
24.
Cortés
,
F.
,
Martinez
,
M.
, and
Elejabarrieta
,
M. J.
,
2012
,
Viscoelastic Surface Treatments for Passive Control of Structural Vibration
,
Nova Publishers, Inc.
,
New York
.
25.
ASTM E 756-05,
2010
,
Standard Test Method for Measuring Vibration-Damping Properties of Materials, American Society for Testing and Material
, West Conshohocken, PA.
You do not currently have access to this content.