This paper deals with the optimal damping of a taut cable when the excitation is random in nature. Both white noise and narrow band (NB) random excitations are considered. Effects of spatial correlations of random excitations on the taut cable and the external damper's support flexibility are studied. A general procedure to construct a root loci plot is developed. Numerical results are presented and compared with optimal damping values for free vibration.
Issue Section:
Research Papers
References
1.
Pacheco
, B. M.
, Fujino
, Y.
, and Sulekh
, A.
, 1993
, “Estimation Curve for Modal Damping in Stay Cables With Modal Damping
,” ASCE J. Struct. Eng.
, 119
(6
), pp. 1961
–1979
.2.
Sinha
, A.
, 2010
, Vibration of Mechanical Systems
, Cambridge University Press
, Cambridge, UK
.3.
Krenk
, S.
, 2000
, “Vibrations of a Taut Cable With an External Damper
,” ASME J. Appl. Mech.
, 67
(4
), pp. 772
–776
.4.
Main
, J. A.
, and Jones
, N. P.
, 2002
, “Free Vibrations of Taut Cable With Attached Damper, I: Linear Viscous Damper
,” ASCE J. Eng. Mech.
, 128
(10
), pp. 1062
–1071
.5.
Krenk
, S.
, and Hogsberg
, J. R.
, 2005
, “Damping of Cables by a Transverse Force
,” ASCE J. Eng. Mech.
, 131
(4
), pp. 340
–348
.6.
Huang
, Z.
, and Jones
, N. P.
, 2011
, “Damping of Taut-Cable Systems: Effects of Linear Elastic Spring Support
,” ASCE J. Eng. Mech.
, 137
(7
), pp. 512
–518
.7.
Fournier
, J. A.
, and Cheng
, S.
, 2014
, “Impact of Damper Stiffness and Damper Support Stiffness on the Efficiency of a Linear Viscous Damper in Controlling Stay Cable Vibrations
,” ASCE J. Bridge Eng.
, 19
(4
), p. 04013022
.8.
Izzi
, M.
, L.
, Caracoglia
, L.
, and Noe
, S.
, 2016
, “Investigating the Use of Targeted-Energy-Transfer Devices for Stay-Cable Vibration Mitigation
,” Struct. Control Health Monit.
, 23
(2
), pp. 315
–332
.9.
Scanlan
, R. H.
, and Jones
, N. P.
, 1990
, “Aeroelastic Analysis of Cable-Stayed Bridges
,” ASCE J. Struct. Eng.
, 116
(2
), pp. 279
–297
.10.
Johnson
, E. A.
, Christenson
, R. C.
, and Spencer
, B. F.
, Jr., 2003
, “Semiactive Damping of Cables With Sag
,” Comput. Aided Civil Infrastruct. Eng.
, 18
(2
), pp. 132
–146
.11.
Sinha
, A.
, 2007
, Linear Systems: Optimal and Robust Control
, CRC Press
, Boca Raton, FL
.12.
MathWorks, 2016, “MATLAB Software,”
The MathWorks Inc., Natick, MA, http://www.mathworks.com/13.
Kuo
, B. C.
, 2000
, Automatic Control Systems
, Prentice-Hall
, Upper Saddle River, NJ
.14.
Cha
, D.
, and Sinha
, A.
, 2002
, “Effects of the Nature of Excitation on the Response of a Mistuned Bladed Disk Assembly
,” ASME J. Turbomach.
, 124
(4
), pp. 588
–596
.15.
Sinha
, A
., 2015
, “Optimal Damped Vibration Absorber: Including Multiple Modes and Excitation Due to Rotating Unbalance
,” ASME J. Vib. Acoust.
, 137
(6
), p. 064501
.Copyright © 2016 by ASME
You do not currently have access to this content.