This paper deals with the optimal damping of a taut cable when the excitation is random in nature. Both white noise and narrow band (NB) random excitations are considered. Effects of spatial correlations of random excitations on the taut cable and the external damper's support flexibility are studied. A general procedure to construct a root loci plot is developed. Numerical results are presented and compared with optimal damping values for free vibration.

References

1.
Pacheco
,
B. M.
,
Fujino
,
Y.
, and
Sulekh
,
A.
,
1993
, “
Estimation Curve for Modal Damping in Stay Cables With Modal Damping
,”
ASCE J. Struct. Eng.
,
119
(
6
), pp.
1961
1979
.
2.
Sinha
,
A.
,
2010
,
Vibration of Mechanical Systems
,
Cambridge University Press
,
Cambridge, UK
.
3.
Krenk
,
S.
,
2000
, “
Vibrations of a Taut Cable With an External Damper
,”
ASME J. Appl. Mech.
,
67
(
4
), pp.
772
776
.
4.
Main
,
J. A.
, and
Jones
,
N. P.
,
2002
, “
Free Vibrations of Taut Cable With Attached Damper, I: Linear Viscous Damper
,”
ASCE J. Eng. Mech.
,
128
(
10
), pp.
1062
1071
.
5.
Krenk
,
S.
, and
Hogsberg
,
J. R.
,
2005
, “
Damping of Cables by a Transverse Force
,”
ASCE J. Eng. Mech.
,
131
(
4
), pp.
340
348
.
6.
Huang
,
Z.
, and
Jones
,
N. P.
,
2011
, “
Damping of Taut-Cable Systems: Effects of Linear Elastic Spring Support
,”
ASCE J. Eng. Mech.
,
137
(
7
), pp.
512
518
.
7.
Fournier
,
J. A.
, and
Cheng
,
S.
,
2014
, “
Impact of Damper Stiffness and Damper Support Stiffness on the Efficiency of a Linear Viscous Damper in Controlling Stay Cable Vibrations
,”
ASCE J. Bridge Eng.
,
19
(
4
), p.
04013022
.
8.
Izzi
,
M.
,
L.
,
Caracoglia
,
L.
, and
Noe
,
S.
,
2016
, “
Investigating the Use of Targeted-Energy-Transfer Devices for Stay-Cable Vibration Mitigation
,”
Struct. Control Health Monit.
,
23
(
2
), pp.
315
332
.
9.
Scanlan
,
R. H.
, and
Jones
,
N. P.
,
1990
, “
Aeroelastic Analysis of Cable-Stayed Bridges
,”
ASCE J. Struct. Eng.
,
116
(
2
), pp.
279
297
.
10.
Johnson
,
E. A.
,
Christenson
,
R. C.
, and
Spencer
,
B. F.
, Jr.
,
2003
, “
Semiactive Damping of Cables With Sag
,”
Comput. Aided Civil Infrastruct. Eng.
,
18
(
2
), pp.
132
146
.
11.
Sinha
,
A.
,
2007
,
Linear Systems: Optimal and Robust Control
,
CRC Press
,
Boca Raton, FL
.
12.
MathWorks, 2016, “MATLAB Software,”
The MathWorks Inc., Natick, MA, http://www.mathworks.com/
13.
Kuo
,
B. C.
,
2000
,
Automatic Control Systems
,
Prentice-Hall
,
Upper Saddle River, NJ
.
14.
Cha
,
D.
, and
Sinha
,
A.
,
2002
, “
Effects of the Nature of Excitation on the Response of a Mistuned Bladed Disk Assembly
,”
ASME J. Turbomach.
,
124
(
4
), pp.
588
596
.
15.
Sinha
,
A
.,
2015
, “
Optimal Damped Vibration Absorber: Including Multiple Modes and Excitation Due to Rotating Unbalance
,”
ASME J. Vib. Acoust.
,
137
(
6
), p.
064501
.
You do not currently have access to this content.