Abstract

Electromagnetic resonant shunt tuned mass damper-inerter (ERS-TMDI) has recently been developed for dual-functional vibration suppression and energy harvesting. However, energy harvesting and vibration mitigation are conflicting objectives, thus rendering the multi-objectives optimization problem a very challenging task. In this paper, we aim at solving the design trade-off between these two objectives by proposing alternative configurations and finding the model with the best performance for both vibration suppression and energy harvesting. Three novel configurations are presented and are compared with the conventional ERS-TMDI. In the first two configurations, the primary structure and the absorber are only coupled through the spring. Both inerter and electromagnetic devices are connected to the ground in the first configuration, whereas only the inerter is connected to the ground in the second configuration. The third configuration is inspired by the recently developed three-element vibration-inerter (TEVAI), but in this case an electromagnetic device is sandwiched in between the primary structure and the absorber. Closed-form expressions are presented for optimum vibration mitigation and energy harvesting performances using H2 criteria for both ground and force excitations. The obtained explicit expressions are validated using matlab optimization toolbox. Simulation examples reveal that the first configuration performs the best, whereas the second performs the worst in terms of both vibration mitigation and energy harvesting. It is also demonstrated that replacing the series RLC with a parallel circuit can improve or degrade the vibration mitigation performance, but it constantly enhances the energy harvesting performance in all four models.

References

1.
Frahm
,
H.
,
1911
, “
Device for Damping Vibrations of Bodies
,” U.S. Patent,” 989,958, pp.
3576
3580
.
2.
Den Hartog
,
J. P.
,
1956
,
Mechanical Vibrations
, 4th ed.,
McGraw-Hill
,
New York
.
3.
Salvi
,
J.
, and
Rizzi
,
E.
,
2016
, “
Closed-Form Optimum Tuning Formulas for Passive Tuned Mass Dampers Under Benchmark Excitations
,”
Smart Struct. Syst.
,
17
(
2
), pp.
231
256
. 10.12989/sss.2016.17.2.231
4.
Ormondroyd
,
J.
, and
Hartog
,
J. P. D.
,
1928
, “
Theory of the Dynamic Vibration Absorber
,”
ASME J. Appl. Mech.
,
50
(
7
), pp.
9
22
.
5.
Brock
,
J. E.
,
1946
, “
A Note on the Damped Vibration Absorber
,”
ASME J. Appl. Mech.
,
68
, p.
A-284
.
6.
Wang
,
F. C.
,
Hong
,
M. F.
, and
Lin
,
T. C.
,
2011
, “
Designing and Testing a Hydraulic Inerter
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
1
), pp.
66
72
. 10.1243/09544062JMES2199
7.
Wang
,
J.-F.
, and
Lin
,
C.-C.
,
2015
, “
Extracting Parameters of TMD and Primary Structure From the Combined System Response
,”
Smart Struct. Syst.
,
16
(
5
), pp.
937
960
. 10.12989/sss.2015.16.5.937
8.
Marian
,
L.
, and
Giaralis
,
A.
,
2017
, “
The Tuned Mass-Damper-Inerter for Harmonic Vibrations Suppression, Attached Mass Reduction, and Energy Harvesting
,”
Smart Struct. Syst.
,
19
(
6
), pp.
665
678
.
9.
Ricciardelli
,
F.
, and
Vickery
,
B. J.
,
1999
, “
Tuned Vibration Absorbers With Dry Friction Damping
,”
Earthquake Eng. Struct. Dyn.
,
28
(
7
), pp.
707
724
. 10.1002/(SICI)1096-9845(199907)28:7<707::AID-EQE836>3.0.CO;2-C
10.
Bukhari
,
M. A.
, and
Barry
,
O. R.
,
2018
, “
Nonlinear Vibrations Analysis of Overhead Power Lines: A Beam With Mass–Spring–Damper–Mass Systems
,”
ASME J. Vib. Acoust.
,
140
(
3
), p.
031004
. 10.1115/1.4038807
11.
Xu
,
K.
, and
Igusa
,
T.
,
1992
, “
Dynamic Characteristics of Multiple Substructures With Closely Spaced Frequencies
,”
Earthquake Eng. Struct. Dyn.
,
21
(
12
), pp.
1059
1070
. 10.1002/eqe.4290211203
12.
Lin
,
C. C.
,
Wang
,
J. F.
, and
Chen
,
B. L.
,
2005
, “
Train-Induced Vibration Control of High-Speed Railway Bridges Equipped With Multiple Tuned Mass Dampers
,”
ASCE J. Bride Eng.
,
10
(
4
), pp.
398
414
. 10.1061/(ASCE)1084-0702(2005)10:4(398)
13.
Casciati
,
F.
, and
Giuliano
,
F.
,
2009
, “
Performance of Multi-TMD in the Towers of Suspension Bridges
,”
J. Vib. Control
,
15
(
6
), pp.
821
847
. 10.1177/1077546308091455
14.
Zuo
,
L.
,
2009
, “
Effective and Robust Vibration Control Using Series Multiple Tuned-Mass Dampers
,”
ASME J. Vib. Acoust.
,
131
(
3
), p.
031003
. 10.1115/1.3085879
15.
De Angelis
,
M.
,
Perno
,
S.
, and
Reggio
,
A.
,
2012
, “
Dynamic Response and Optimal Design of Structures With Large Mass Ratio TMD
,”
Earthquake Eng. Struct. Dyn.
,
41
(
1
), pp.
41
60
. 10.1002/eqe.1117
16.
Smith
,
M. C.
,
2002
, “
Synthesis of Mechanical Networks: The Inerter
,”
IEEE Trans. Automat. Control
,
47
(
10
), pp.
1648
1662
. 10.1109/TAC.2002.803532
17.
Marian
,
L.
, and
Giaralis
,
A.
,
2014
, “
Optimal Design of a Novel Tuned Mass-Damper-Inerter (TMDI) Passive Vibration Control Configuration for Stochastically Support-Excited Structural Systems
,”
Probab. Eng. Mech.
,
38
(
Oct.
), pp.
156
164
. 10.1016/j.probengmech.2014.03.007
18.
Smith
,
M. C.
, and
Wang
,
F. U.-C.
,
2004
, “
Performance Benefits in Passive Vehicle Suspensions Employing Inerters
,”
Veh. Syst. Dyn.
,
42
(
4
), pp.
235
257
. 10.1080/00423110412331289871
19.
Papageorgiou
,
C.
, and
Smith
,
M. C.
,
2006
, “
Positive Real Synthesis Using Matrix Inequalities for Mechanical Networks: Application to Vehicle Suspension
,”
IEEE Trans. Control Syst. Technol.
,
14
(
3
), pp.
423
435
. 10.1109/TCST.2005.863663
20.
Hu
,
Y. L.
,
Chen
,
M. Z. Q.
, and
Shu
,
Z.
,
2014
, “
Passive Vehicle Suspensions Employing Inerters With Multiple Performance Requirements
,”
J. Sound Vib.
,
333
(
8
), pp.
2212
2225
. 10.1016/j.jsv.2013.12.016
21.
Jiang
,
J. Z.
,
Matamoros-Sanchez
,
A. Z.
,
Goodall
,
R. M.
, and
Smith
,
M. C.
,
2012
, “
Passive Suspensions Incorporating Inerters for Railway Vehicles
,”
Veh. Syst. Dyn.
,
50
(
1
), pp.
263
276
. 10.1080/00423114.2012.665166
22.
Wang
,
F.-C.
,
Liao
,
M.-K.
,
Liao
,
B.-H.
,
Su
,
W.-J.
, and
Chan
,
H.-A.
,
2009
, “
The Performance Improvements of Train Suspension Systems With Mechanical Networks Employing Inerters
,”
Veh. Syst. Dyn.
,
47
(
7
), pp.
805
830
. 10.1080/00423110802385951
23.
Salvi
,
J.
, and
Giaralis
,
A.
,
2016
, “
Concept Study of a Novel Energy Harvesting-Enabled Tuned Mass-Damper-Inerter (EH-TMDI) Device for Vibration Control of Harmonically-Excited Structures
,”
J. Phys.: Conf. Ser.
,
744
(
1
), p.
012082
. 10.1088/1742-6596/744/1/012082
24.
Giaralis
,
A.
, and
Petrini
,
F.
,
2017
, “
Wind-Induced Vibration Mitigation in Tall Buildings Using the Tuned Mass Damper-Inerter (TMDI)
,”
ASCE J. Struct. Eng.
,
143
(
9
), p.
04017127
. 10.1061/(ASCE)ST.1943-541X.0001863
25.
Sun
,
H.
,
Zuo
,
L.
,
Wang
,
X.
,
Peng
,
J.
, and
Wang
,
W.
,
2019
, “
Exact H2 Optimal Solution of the Inerter-Based Isolation System for Building Structures
,”
Struct. Control Health Monit.
,
26
(
6
), p.
e2357
. 10.1002/stc.2357
26.
Ikago
,
K.
,
Saito
,
K.
, and
Inoue
,
N.
,
2012
, “
Seismic Control of Single-Degree-of-Freedom Structure Using Tuned Viscous Mass Damper
,”
Earthquake Eng. Struct. Dyn.
,
41
(
3
), pp.
453
474
. 10.1002/eqe.1138
27.
Papageorgiou
,
C.
, and
Smith
,
M. C.
,
2005
, “
Laboratory Experimental Testing of Inerters
,”
Proceedings of the 44th IEEE Conference on Decision and Control
,
Seville, Spain
,
Dec. 15
, pp.
3351
3356
.
28.
Cheung
,
Y. L.
, and
Wong
,
W. O.
,
2011
, “
H2 Optimization of a None-Traditional Dynamic Vibration Absorber for Vibration Control of Structures Under Random Force Excitation
,”
J. Sound Vib.
,
330
(
6
), pp.
1039
1044
. 10.1016/j.jsv.2010.10.031
29.
Gonzalez-Buelga
,
A.
,
Clare
,
L. R.
,
Cammarano
,
A.
,
Neild
,
S. A.
,
Burrow
,
S. G.
, and
Inman
,
D. J.
,
2014
, “
An Optimised Tuned Mass Damper/Harvester Device
,”
Struct. Control Health Monit.
,
21
(
8
), pp.
1154
1169
. 10.1002/stc.1639
30.
Barry
,
O.
, and
Bukhari
,
M.
,
2017
, “
On the Modeling and Analysis of an Energy Harvester Moving Vibration Absorber for Power Lines
,”
ASME Dynamic Systems and Control Conference
,
Tysons Corner, VA
,
Oct. 11–13
, p.
V002T23A005
.
31.
Liu
,
Y.
,
2016
, “
Design, Modeling and Control of Vibration Systems With Electromagnetic Energy Harvesters and Their Application to Vehicle Suspensions
,”
Doctoral dissertation
,
Virginia Tech
.
32.
Gonzalez-Buelga
,
A.
,
Clare
,
L. R.
,
Neild
,
S. A.
,
Jiang
,
J. Z.
, and
Inman
,
D. J.
,
2015
, “
An Electromagnetic Inerter-Based Vibration Suppression
,”
Smart Mater. Struct.
,
24
(
5
), p.
055015
. 10.1088/0964-1726/24/5/055015
33.
Scruggs
,
J.
, and
Lindner
,
D. K.
,
1999
, “
Active Energy Control in Civil Structures. In Symposium on Smart Structures and Materials
,”
Smart Struct. Mater.
,
3671
, pp.
194
205
. 10.1117/12.348670
34.
Scruggs
,
J. T.
, and
Iwan
,
W. D.
,
2003
, “
Control of a Civil Structure Using an Electric Machine With Semiactive Capability
,”
ASCE J. Struct. Eng.
,
129
(
7
), pp.
951
959
. 10.1061/(ASCE)0733-9445(2003)129:7(951)
35.
Liu
,
Y.
,
Lin
,
C.-C.
,
Parker
,
J.
, and
Zuo
,
L.
,
2016
, “
Exact H2 Optimal Tuning and Experimental Verification of Energy-Harvesting Series Electromagnetic Tuned-Mass Dampers
,”
ASME J. Vib. Acoust.
,
138
(
6
), p.
061003
. 10.1115/1.4034081
36.
Luo
,
Y.
,
Sun
,
H.
,
Wang
,
X.
,
Zuo
,
L.
, and
Chen
,
C.
,
2017
, “
Wind Induced Vibration Control and Energy Harvesting of Electromagnetic Resonant Shunt Tuned Mass-Damper-Inerter for Building Structures
,”
Shock Vib.
, pp.
1
13
.
37.
Javidialesaadi
,
A.
, and
Wierschem
,
N. E.
,
2018
, “
Three-Element Vibration Absorber–Inerter for Passive Control of Single-Degree-of-Freedom Structures
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
061007
. 10.1115/1.4040045
38.
Farzaneh Joubaneh
,
E.
,
Barry
,
O. R.
, and
Zuo
,
L.
,
2018
, “
On the Vibration Suppression and Energy Harvesting of Building Structures Using an Electromagnetic-Inerter-Absorber
,”
ASME Dynamic Systems and Control Conference
, ASME Paper No. V002T18A005. 10.1115/1.4044303
39.
Sun
,
H.
,
Luo
,
Y.
,
Wang
,
X.
, and
Zuo
,
L.
,
2017
, “
Seismic Control of a SDOF Structure Through Electromagnetic Resonant Shunt Tuned Mass-Damper-Inerter and Exact H2 Optimal Solution
,”
J. Vibroeng.
,
19
(
3
), pp.
2063
2079
. 10.21595/jve.2017.18256
40.
Gradshteyn
,
I. S.
, and
Ryzhik
,
I. M.
,
1980
,
Table of Integrals Series and Product
,
Academic Press
,
New York
.
You do not currently have access to this content.