Abstract

An efficient Galerkin averaging-incremental harmonic balance (EGA-IHB) method is developed based on the fast Fourier transform (FFT) and tensor contraction to increase efficiency and robustness of the IHB method when calculating periodic responses of complex nonlinear systems with non-polynomial nonlinearities. As a semi-analytical method, derivation of formulae and programming are significantly simplified in the EGA-IHB method. The residual vector and Jacobian matrix corresponding to nonlinear terms in the EGA-IHB method are expressed using truncated Fourier series. After calculating Fourier coefficient vectors using the FFT, tensor contraction is used to calculate the Jacobian matrix, which can significantly improve numerical efficiency. Since inaccurate results may be obtained from discrete Fourier transform-based methods when aliasing occurs, the minimal non-aliasing sampling rate is determined for the EGA-IHB method. Performances of the EGA-IHB method are analyzed using several benchmark examples; its accuracy, efficiency, convergence, and robustness are analyzed and compared with several widely used semi-analytical methods. The EGA-IHB method has high efficiency and good robustness for both polynomial and non-polynomial nonlinearities, and it has considerable advantages over the other methods.

References

1.
Lau
,
S. L.
,
Cheung
,
Y. K.
, and
Wu
,
S. Y.
,
1982
, “
A Variable Parameter Incrementation Method for Dynamic Instability of Linear and Nonlinear Elastic Systems
,”
ASME J. Appl. Mech.
,
49
(
4
), pp.
849
853
. 10.1115/1.3162626
2.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
. 10.1115/1.3176036
3.
Huang
,
J. L.
,
Su
,
R. K. L.
,
Li
,
W. H.
, and
Chen
,
S. H.
,
2011
, “
Stability and Bifurcation of an Axially Moving Beam Tuned to Three-to-One Internal Resonances
,”
J. Sound Vib.
,
330
(
3
), pp.
471
485
. 10.1016/j.jsv.2010.04.037
4.
Gadella
,
M.
,
Giacomini
,
H.
, and
Lara
,
L. P.
,
2015
, “
Periodic Analytic Approximate Solutions for the Mathieu Equation
,”
Appl. Math. Comput.
,
271
(
11
), pp.
436
445
. 10.1016/j.amc.2015.09.018
5.
Chen
,
L.
,
Basu
,
B.
, and
Nielsen
,
S. R. K.
,
2019
, “
Nonlinear Periodic Response Analysis of Mooring Cables Using Harmonic Balance Method
,”
J. Sound Vib.
,
438
(
1
), pp.
402
418
. 10.1016/j.jsv.2018.09.027
6.
Chen
,
S. H.
,
Cheung
,
Y. K.
, and
Xing
,
H. X.
,
2001
, “
Nonlinear Vibration of Plane Structures by Finite Element and Incremental Harmonic Balance Method
,”
Nonlinear Dyn.
,
26
(
1
), pp.
87
104
. 10.1023/A:1012982009727
7.
Dou
,
S. G.
, and
Jensen
,
J. S.
,
2015
, “
Optimization of Nonlinear Structural Resonance Using the Incremental Harmonic Balance Method
,”
J. Sound Vib.
,
334
(
1
), pp.
239
254
. 10.1016/j.jsv.2014.08.023
8.
Liu
,
G.
,
Lv
,
Z. R.
,
Liu
,
J. K.
, and
Chen
,
Y. M.
,
2018
, “
Quasi-periodic Aeroelastic Response Analysis of an Airfoil With External Store by Incremental Harmonic Balance Method
,”
Int. J. Nonlinear Mech.
,
100
(
4
), pp.
10
19
. 10.1016/j.ijnonlinmec.2018.01.004
9.
Fontanela
,
F.
,
Grolet
,
A.
,
Salles
,
L.
, and
Hoffmann
,
N.
,
2019
, “
Computation of Quasi-Periodic Localised Vibrations in Nonlinear Cyclic and Symmetric Structures Using Harmonic Balance Methods
,”
J. Sound Vib.
,
438
(
9
), pp.
54
65
. 10.1016/j.jsv.2018.09.002
10.
Ju
,
R.
,
Fan
,
W.
,
Zhu
,
W. D.
, and
Huang
,
J. L.
,
2017
, “
A Modified Two-Timescale Incremental Harmonic Balance Method for Steady-State Quasi-Periodic Responses of Nonlinear Systems
,”
J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051007
. 10.1115/1.4036118
11.
Huang
,
J. L.
, and
Zhu
,
W. D.
,
2010
, “
A New Incremental Harmonic Balance Method With Two Time Scales for Quasi-Periodic Motions of an Axially Moving Beam With Internal Resonance Under Single-Tone External Excitation
,”
ASME J. Vib. Acoust.
,
139
(
10
), p.
021010
. 10.1115/imece2019-12153
12.
Pierre
,
C.
,
Ferri
,
A. A.
, and
Dowell
,
E. H.
,
1985
, “
Multi-Harmonic Analysis of Dry Friction Damped Systems Using an Incremental Harmonic Balance Method
,”
ASME J. Appl. Mech.
,
52
(
4
), pp.
958
964
. 10.1115/1.3169175
13.
Zhao
,
D.
,
Wang
,
X. M.
,
Cheng
,
Y.
,
Liu
,
S. G.
,
Wu
,
Y. H.
,
Chai
,
L. Q.
,
Liu
,
Y.
, and
Cheng
,
Q. J.
,
2018
, “
Analysis of Single-Degree-of-Freedom Piezoelectric Energy Harvester With Stopper by Incremental Harmonic Balance Method
,”
Mater. Res. Express
,
5
(
3
), p.
055502
. 10.1088/2053-1591/aabefc
14.
Huang
,
J. L.
, and
Zhu
,
W. D.
,
2014
, “
Nonlinear Dynamics of a High-Dimensional Model of a Rotating Euler–Bernoulli Beam Under the Gravity Load
,”
ASME J. Appl. Mech.
,
81
(
10
), p.
101007
. 10.1115/1.4028046
15.
Xu
,
G. Y.
, and
Zhu
,
W. D.
,
2010
, “
Nonlinear and Time-Varying Dynamics of High-Dimensional Models of a Translating Beam With a Stationary Load Subsystem
,”
ASME J. Vib. Acoust.
,
132
(
6
), p.
061012
. 10.1115/1.4000464
16.
Lau
,
S. L.
, and
Cheung
,
Y. K.
,
1981
, “
Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems
,”
ASME J. Appl. Mech.
,
48
(
4
), pp.
959
964
. 10.1115/1.3157762
17.
Leung
,
A. Y. T.
, and
Chui
,
S. K.
,
1995
, “
Non-Linear Vibration of Coupled Duffing Oscillators by an Improved Incremental Harmonic Balance Method
,”
J. Sound. Vib.
,
181
(
4
), pp.
619
633
.
18.
Lu
,
W.
,
Ge
,
F.
,
Wu
,
X. D.
, and
Hong
,
Y. S.
,
2013
, “
Nonlinear Dynamics of a Submerged Floating Moored Structure by Incremental Harmonic Balance Method With FFT
,”
Mar. Struct.
,
31
(
4
), pp.
63
81
. 10.1016/j.marstruc.2013.01.002
19.
Wang
,
X. F.
, and
Zhu
,
W. D.
,
2015
, “
A Modified Incremental Harmonic Balance Method Based on the Fast Fourier Transform and Broyden’s Method
,”
Nonlinear Dyn.
,
81
(
1
), pp.
981
989
. 10.1007/s11071-015-2045-x
20.
Gay
,
D.
,
1979
, “
Some Convergence Properties of Broyden’s Method
,”
J. Numer. Anal.
,
16
(
4
), pp.
623
630
. 10.1137/0716047
21.
Zhang
,
Z. Y.
, and
Chen
,
Y. S.
,
2014
, “
Harmonic Balance Method With Alternating Frequency/Time Domain Technique for Nonlinear Dynamical System With Fractional Exponential
,”
Appl. Math. Mech.
,
35
(
4
), pp.
423
436
. 10.1007/s10483-014-1802-9
22.
Noah
,
S. T.
, and
Kim
,
Y. B.
,
1991
, “
Stability and Bifurcation Analysis of Oscillators With Piecewise-Linear Characteristics—A General Approach
,”
ASME J. Appl. Mech.
,
58
(
2
), pp.
545
553
. 10.1115/1.2897218
23.
Van Til
,
J.
,
Alijani
,
F.
,
Voormeeren
,
S. N.
, and
Lacarbonara
,
W.
,
2019
, “
Frequency Domain Modeling of Nonlinear End Stop Behavior in Tuned Mass Damper Systems Under Single- and Multi-Harmonic Excitations
,”
J. Sound Vib.
,
438
(
1
), pp.
139
152
. 10.1016/j.jsv.2018.09.015
24.
Hou
,
L.
,
Chen
,
Y. S.
,
Fu
,
Y. Q.
,
Chen
,
H. Z.
,
Lu
,
Z. Y.
, and
Liu
,
Z. S.
,
2017
, “
Application of the HB–AFT Method to the Primary Resonance Analysis of a Dual-Rotor System
,”
Nonlinear Dyn.
,
88
(
4
), pp.
2531
2551
. 10.1007/s11071-017-3394-4
25.
Chen
,
H. Z.
,
Hou
,
L.
,
Chen
,
Y. S.
, and
Yang
,
R.
,
2017
, “
Dynamic Characteristics of Flexible Rotor With Squeeze Film Damper Excited by Two Frequencies
,”
Nonlinear Dyn.
,
87
(
4
), pp.
2463
2481
. 10.1007/s11071-016-3204-4
26.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
1986
,
Matrix Computations
,
The John Hopkins University Press
,
Baltimore, MD
.
27.
Cheung
,
Y. K.
,
Chen
,
S. H.
, and
Lau
,
S. L.
,
1990
, “
Application of the Incremental Harmonic Balance Method to Cubic Non-Linearity Systems
,”
J. Sound Vib.
,
140
(
2
), pp.
273
286
. 10.1016/0022-460X(90)90528-8
28.
Cveticanin
,
L.
,
2011
,
The Duffing Equation: Nonlinear Oscillators and Their Behaviour
,
Wiley
,
New York
.
29.
Leung
,
A. Y. T.
,
1989
, “
Nonlinear Natural Vibration Analysis of Beams by Selective Coefficient Increment
,”
Comput. Mech.
,
5
(
1
), pp.
73
80
. 10.1007/BF01046880
30.
Sevgi
,
L.
,
2007
, “
Numerical Fourier Transforms: DFT and FFT
,”
IEEE Antenn. Propag. Mag.
,
49
(
3
), pp.
238
243
. 10.1109/MAP.2007.4293982
31.
Proakis
,
J. G.
, and
Manolakis
,
D. K.
,
2007
,
Digital Signal Processing
,
Pearson Prentice Hall
,
New Jersey
.
32.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
, “
Broadband Piezoelectric Power Generation on High-Energy Orbits of the Bistable Duffing Oscillator With Electromechanical Coupling
,”
J. Sound Vib.
,
330
(
10
), pp.
2339
2353
. 10.1016/j.jsv.2010.11.018
33.
Kennedy
,
M.
, and
Chua
,
L.
,
1986
, “
Van der Pol and Chaos
,”
IEEE Trans. Circuits Syst.
,
33
(
10
), pp.
974
980
. 10.1109/TCS.1986.1085855
34.
Klinger
,
T.
,
Greiner
,
F.
,
Rohde
,
A.
,
Piel
,
A.
, and
Koepke
,
M. E.
,
1995
, “
Van der Pol Behavior of Relaxation Oscillations in a Periodically Driven Thermionic Discharge
,”
Phys. Rev. E
,
52
(
4
), p.
4316
. 10.1103/physreve.52.4316
35.
Bo
,
L.
,
Zhang
,
J.
,
Lei
,
L.
,
Chen
,
H.
,
Jia
,
S.
, and
Li
,
D.
,
2014
, “
Modeling of Dielectric Elastomer as Electromechanical Resonator
,”
J. Appl. Phys.
,
116
(
12
), pp.
63
67
.
You do not currently have access to this content.