Abstract

In this paper, acoustic vibration of hexagonal nanoparticles is investigated. In terms of the spherical system of vector functions, the first-order differential equation with constant coefficients for a layered sphere is obtained via variable transformation and mass conservation. The propagation matrix method is then used to obtain the vibration equation in the multilayered system. Further utilizing a new root-searching algorithm, the present solution is first compared to the existing solution for a uniform and isotropic sphere. It is shown that, by increasing the sublayer number, the present solution approaches the exact one. After validating the formulation and program, we investigate the acoustic vibration characteristics in nanoparticles. These include the effects of material anisotropy, damping, and core–shell imperfect interface on the vibration frequency and modal shapes of the displacements and tractions.

References

1.
Jensen
,
K.
,
Kim
,
K.
, and
Zettl
,
A.
,
2008
, “
An Atomic-Resolution Nanomechanical Mass Sensor
,”
Nat. Nanotechnol.
,
3
(
9
), pp.
533
537
. 10.1038/nnano.2008.200
2.
Juvé
,
V.
,
Crut
,
A.
,
Maioli
,
P.
,
Pellarin
,
M.
,
Broyer
,
M.
,
Del Fatti
,
N.
, and
Vallée
,
F.
,
2010
, “
Probing Elasticity at the Nanoscale: Terahertz Acoustic Vibration of Small Metal Nanoparticles
,”
Nano Lett.
,
10
(
5
), pp.
1853
1858
. 10.1021/nl100604r
3.
Zijlstra
,
P.
, and
Orrit
,
M.
,
2011
, “
Single Metal Nanoparticles: Optical Detection, Spectroscopy and Applications
,”
Rep. Prog. Phys.
,
74
(
10
), p.
106401
. 10.1088/0034-4885/74/10/106401
4.
Yi
,
C.
,
Su
,
M. N.
,
Dongare
,
P. D.
,
Chakraborty
,
D.
,
Cai
,
Y. Y.
,
Marolf
,
D. M.
,
Kress
,
R. N.
,
Ostovar
,
B.
,
Tauzin
,
L. J.
,
Wen
,
F.
, and
Chang
,
W. S.
,
2018
, “
Polycrystallinity of Lithographically Fabricated Plasmonic Nanostructures Dominates Their Acoustic Vibrational Damping
,”
Nano Lett.
,
18
(
6
), pp.
3494
3501
. 10.1021/acs.nanolett.8b00559
5.
Combe
,
N.
, and
Saviot
,
L.
,
2009
, “
Acoustic Modes in Metallic Nanoparticles: Atomistic Versus Elasticity Modeling
,”
Phys. Rev. B
,
80
(
3
), p.
035411
. 10.1103/PhysRevB.80.035411
6.
Sharma
,
J. N.
, and
Sharma
,
N.
,
2011
, “
Vibration Analysis of Homogeneous Transradially Isotropic Generalized Thermoelastic Spheres
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041001
. 10.1115/1.4003396
7.
Crut
,
A.
,
Maioli
,
P.
,
Del Fatti
,
N.
, and
Vallée
,
F.
,
2009
, “
Anisotropy Effects on the Time-Resolved Spectroscopy of the Acoustic Vibrations of Nanoobjects
,”
Phys. Chem. Chem. Phys.
,
11
(
28
), pp.
5882
5888
. 10.1039/b902107h
8.
Crut
,
A.
,
Maioli
,
P.
,
Del Fatti
,
N.
, and
Vallée
,
F.
,
2015
, “
Acoustic Vibrations of Metal Nano-Objects: Time-Domain Investigations
,”
Phys. Rep.
,
549
, pp.
1
43
. 10.1016/j.physrep.2014.09.004
9.
Wu
,
B.
,
Gan
,
Y.
,
Carrera
,
E.
, and
Chen
,
W. Q.
,
2019
, “
Three-Dimensional Vibrations of Multilayered Hollow Spheres Submerged in a Complex Fluid
,”
J. Fluid Mech.
,
879
, pp.
682
715
. 10.1017/jfm.2019.681
10.
Beane
,
G.
,
Devkota
,
T.
,
Brown
,
B. S.
, and
Hartland
,
G. V.
,
2018
, “
Ultrafast Measurements of the Dynamics of Single Nanostructures: A Review
,”
Rep. Prog. Phys.
,
82
(
1
), p.
016401
. 10.1088/1361-6633/aaea4b
11.
Saviot
,
L.
,
Murray
,
D. B.
, and
De Lucas
,
M. D. C. M.
,
2004
, “
Vibrations of Free and Embedded Anisotropic Elastic Spheres: Application to Low-Frequency Raman Scattering of Silicon Nanoparticles in Silica
,”
Phys. Rev. B
,
69
(
11
), p.
113402
. 10.1103/PhysRevB.69.113402
12.
Chen
,
W. Q.
,
2000
, “
Vibration Theory of Non-Homogeneous, Spherically Isotropic Piezoelastic Bodies
,”
J. Sound Vib.
,
236
(
5
), pp.
833
860
.
13.
Chen
,
W. Q.
,
2001
, “
Free Vibration Analysis of Laminated Piezoceramic Hollow Spheres
,”
The J. Acoust. Soc. Am.
,
109
(
1
), pp.
41
50
.
14.
Heyliger
,
P. R.
, and
Jilani
,
A.
,
1992
, “
The Free Vibrations of Inhomogeneous Elastic Cylinders and Spheres
,”
Int. J. Solids Struct.
,
29
(
22
), pp.
2689
2708
.
15.
Heyliger
,
P. R.
, and
Pan
,
E.
,
2016
, “
Free Vibration of Layered Magnetoelectroelastic Spheres
,”
The J. Acoust. Soc. Am.
,
140
(
2
), pp.
988
999
. 10.1121/1.4960545
16.
Pelton
,
M.
,
Sader
,
J. E.
,
Burgin
,
J.
,
Liu
,
M.
,
Guyot-Sionnest
,
P.
, and
Gosztola
,
D.
,
2009
, “
Damping of Acoustic Vibrations in Gold Nanoparticles
,”
Nat. Nanotechnol.
,
4
(
8
), p.
492
. 10.1038/nnano.2009.192
17.
Marty
,
R.
,
Arbouet
,
A.
,
Girard
,
C.
,
Mlayah
,
A.
,
Paillard
,
V.
,
Lin
,
V. K.
,
Teo
,
S. L.
, and
Tripathy
,
S.
,
2011
, “
Damping of the Acoustic Vibrations of Individual Gold Nanoparticles
,”
Nano Lett.
,
11
(
8
), pp.
3301
3306
. 10.1021/nl201668t
18.
Pelton
,
M.
,
Wang
,
Y.
,
Gosztola
,
D.
, and
Sader
,
J. E.
,
2011
, “
Mechanical Damping of Longitudinal Acoustic Oscillations of Metal Nanoparticles in Solution
,”
J. Phys. Chem. C
,
115
(
48
), pp.
23732
23740
. 10.1021/jp207971t
19.
Peckus
,
D.
,
Rong
,
H.
,
Stankevičius
,
L.
,
Juodėnas
,
M.
,
Tamulevičius
,
S.
,
Tamulevičius
,
T.
, and
Henzie
,
J.
,
2017
, “
Hot Electron Emission Can Lead to Damping of Optomechanical Modes in Core–Shell Ag@ TiO2 Nanocubes
,”
J. Phys. Chem. C
,
121
(
43
), pp.
24159
24167
. 10.1021/acs.jpcc.7b06667
20.
Mongin
,
D.
,
Juvé
,
V.
,
Maioli
,
P.
,
Crut
,
A.
,
Del Fatti
,
N.
,
Vallée
,
F.
,
Sànchez-Iglesias
,
A.
,
Pastoriza-Santos
,
I.
, and
Liz-Marzán
,
L. M.
,
2011
, “
Acoustic Vibrations of Metal-Dielectric Core–Shell Nanoparticles
,”
Nano Lett.
,
11
(
7
), pp.
3016
3021
. 10.1021/nl201672k
21.
Fernandes
,
B. D.
,
Vilar-Vidal
,
N.
,
Baida
,
H.
,
Massé
,
P.
,
Oberlé
,
J.
,
Ravaine
,
S.
,
Treguer-Delapierre
,
M.
,
Saviot
,
L.
,
Langot
,
P.
, and
Burgin
,
J.
,
2018
, “
Acoustic Vibrations of Core–Shell Nanospheres: Probing the Mechanical Contact at the Metal–Dielectric Interface
,”
J. Phys. Chem. C
,
122
(
16
), pp.
9127
9133
. 10.1021/acs.jpcc.7b12559
22.
Rokhlin
,
S. I.
, and
Huang
,
W.
,
1992
, “
Ultrasonic Wave Interaction With a Thin Anisotropic Layer Between Two Anisotropic Solids: Exact and Asymptotic-Boundary-Condition Methods
,”
J. Acoust. Soc. Am.
,
92
(
3
), pp.
1729
1742
. 10.1121/1.403912
23.
Liu
,
H.
, and
Pan
,
E.
,
2018
, “
Indentation of a Flat-Ended Cylinder Over a Transversely Isotropic and Layered Half-Space With Imperfect Interfaces
,”
Mech. Mater.
,
118
, pp.
62
73
. 10.1016/j.mechmat.2017.12.008
24.
Stoll
,
T.
,
Maioli
,
P.
,
Crut
,
A.
,
Burgin
,
J.
,
Langot
,
P.
,
Pellarin
,
M.
,
Sánchez-Iglesias
,
A.
,
Rodríguez-González
,
B.
,
Liz-Marzán
,
L. M.
,
Del Fatti
,
N.
, and
Vallée
,
F.
,
2015
, “
Ultrafast Acoustic Vibrations of Bimetallic Nanoparticles
,”
J. Phys. Chem. C
,
119
(
3
), pp.
1591
1599
. 10.1021/jp511070h
25.
Combe
,
N.
,
Chassaing
,
P. M.
, and
Demangeot
,
F.
,
2009
, “
Surface Effects in Zinc Oxide Nanoparticles
,”
Phys. Rev. B
,
79
(
4
), p.
045408
. 10.1103/PhysRevB.79.045408
26.
Zhu
,
F.
,
Pan
,
E.
,
Qian
,
Z.
, and
Wang
,
Y.
,
2019
, “
Dispersion Curves, Mode Shapes, Stresses and Energies of SH and Lamb Waves in Layered Elastic Nanoplates With Surface/Interface Effect
,”
Int. J. Eng. Sci.
,
142
, pp.
170
184
. 10.1016/j.ijengsci.2019.06.003
27.
Qiao
,
S.
,
Shang
,
X.
, and
Pan
,
E.
,
2016
, “
Elastic Guided Waves in a Coated Spherical Shell
,”
Nondestr. Test. Eval.
,
31
(
2
), pp.
165
190
. 10.1080/10589759.2015.1079631
28.
Qiao
,
S.
,
Shang
,
X.
, and
Pan
,
E.
,
2016
, “
Characteristics of Elastic Waves in FGM Spherical Shells, an Analytical Solution
,”
Wave Motion
,
62
, pp.
114
128
. 10.1016/j.wavemoti.2016.01.001
29.
Zhu
,
F.
,
Wang
,
B.
, and
Qian
,
Z. H.
,
2019
, “
A Numerical Algorithm to Solve Multivariate Transcendental Equation Sets in Complex Domain and Its Application in Wave Dispersion Curve Characterization
,”
Acta Mech.
,
230
(
4
), pp.
1303
1321
. 10.1007/s00707-017-2025-y
30.
McClung
,
H. B.
,
1991
, “
Asymmetric Vibrations of an Elastic Sphere
,”
J. Elasticity
,
25
(
1
), pp.
75
94
. 10.1007/BF00041702
31.
Mochizuki
,
E.
,
1988
, “
Sphere-Resonance Method to Determine Elastic Constants of Crystal
,”
J. Appl. Phys.
,
63
(
12
), pp.
5668
5673
. 10.1063/1.340300
32.
Pan
,
E.
,
2019
, “
Green’s Functions for Geophysics: A Review
,”
Rep. Prog. Phys.
,
82
(
10
), p.
106801
. 10.1088/1361-6633/ab1877
33.
Pan
,
E.
,
Chen
,
J. Y.
,
Bevis
,
M.
,
Bordoni
,
A.
,
Barletta
,
V. R.
, and
Molavi Tabrizi
,
A.
,
2015
, “
An Analytical Solution for the Elastic Response to Surface Loads Imposed on a Layered, Transversely Isotropic and Self-gravitating Earth
,”
Geophys. J. Int.
,
203
(
3
), pp.
2150
2181
. 10.1093/gji/ggv432
34.
Chen
,
W. Q.
,
Wang
,
L. Z.
, and
Lu
,
Y.
,
2002
, “
Free Vibrations of Functionally Graded Piezoceramic Hollow Spheres With Radial Polarization
,”
J. Sound Vib.
,
251
(
1
), pp.
103
114
.
35.
Crut
,
A.
,
Juvé
,
V.
,
Mongin
,
D.
,
Maioli
,
P.
,
Del Fatti
,
N.
, and
Vallée
,
F.
,
2011
, “
Vibrations of Spherical Core-Shell Nanoparticles
,”
Phys. Rev. B
,
83
(
20
), p.
205430
. 10.1103/PhysRevB.83.205430
36.
Valentin
,
L. P.
,
Markus
,
H.
, and
Emanuel
,
W.
,
2019
,
Handbook of Contact Mechanics Exact Solutions of Axisymmetric Contact Problems
,
Springer
,
Berlin/Heidelberg, Germany
.
37.
Volkova
,
E. I.
,
Jones
,
I. A.
,
Brooks
,
R.
,
Zhu
,
Y.
, and
Bichoutskaia
,
E.
,
2012
, “
Sequential Multiscale Modelling of SiC/Al Nanocomposites Reinforced with WS2 Nanoparticles Under Static Loading
,”
Phys. Rev. B
,
86
(
10
), p.
104111
.
38.
Worsley
,
M. A.
,
Shin
,
S. J.
,
Merrill
,
M. D.
,
Lenhardt
,
J.
,
Nelson
,
A. J.
,
Woo
,
L. Y.
,
Gash
,
A. E.
,
Baumann
,
T. F.
, and
Orme
,
C. A.
,
2015
, “
Ultralow Density, Monolithic WS2, MoS2, and MoS2/Graphene Aerogels
,”
ACS Nano
,
9
(
5
), pp.
4698
4705
. 10.1021/acsnano.5b00087
39.
Hirth
,
J. P.
, and
Lothe
,
J.
,
1982
,
Theory of Dislocations
,
Wiley
,
New York
.
40.
Polli
,
D.
,
Lisiecki
,
I.
,
Portales
,
H.
,
Cerullo
,
G.
, and
Pileni
,
M. P.
,
2011
, “
Low Sensitivity of Acoustic Breathing Mode Frequency in Co Nanocrystals Upon Change in Nanocrystallinity
,”
ACS Nano
,
5
(
7
), pp.
5785
5791
. 10.1021/nn201468h
41.
Neau
,
G.
,
2003
, “
Lamb Waves in Anisotropic Viscoelastic Plates. Study of the Wave Fronts and Attenuation
,”
Ph.D. thesis
,
University of Bordeaux
,
Bordeaux
.
42.
Bartoli
,
I.
,
Marzani
,
A.
,
Di Scalea
,
F. L.
, and
Viola
,
E.
,
2006
, “
Modeling Wave Propagation in Damped Waveguides of Arbitrary Cross-section
,”
J. Sound Vib.
,
295
(
3–5
), pp.
685
707
. 10.1016/j.jsv.2006.01.021
43.
Zhu
,
F.
,
Wang
,
B.
,
Qian
,
Z.
, and
Pan
,
E.
,
2018
, “
Accurate Characterization of 3D Dispersion Curves and Mode Shapes of Waves Propagating in Generally Anisotropic Viscoelastic/Elastic Plates
,”
Int. J. Solids Struct.
,
150
, pp.
52
65
. 10.1016/j.ijsolstr.2018.06.001
You do not currently have access to this content.