Abstract

Mechanical shock events experienced by electronic systems can be reproduced in the laboratory using Hopkinson bar tests. In such tests, a projectile strikes a rod, creating a pulse which then travels into the electronic system. The quality of these tests depends on the closeness of the shape of the incident pulse to a desired shape specified for each test. This paper introduces a new approach for controlling the shape of the incident pulse through the use of phononic material concepts, thereby improving the test procedure. Two dispersion-modifying concepts, phononic crystals and local resonators, are examined for their wave-shaping capabilities in one-dimensional elastic waveguides. They are evaluated using a transfer matrix method to determine the output pulse shape in the time domain. Parametric studies show that no single parameter allows for precise-enough control to achieve the possible desired output pulse shapes. Instead, the parameters of an approximate, discrete model for a combined phononic crystal/locally resonant system are optimized together to achieve the desired pulse shape. A sensitivity analysis documents that the pulse shape is relatively insensitive to errors in the optimized parameter values. The optimized discrete model is then translated into a physical design, which when analyzed using the finite element (FE) method shows that desired pulse shapes are indeed produced.

References

1.
Kolsky
,
H.
,
1949
, “
An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading
,”
Proc. Phys. Soc. Sec. B
,
62
(
11
), pp.
676
700
.
2.
Davies
,
R. M.
, and
Ingram
,
T. G.
,
1948
, “
A Critical Study of the Hopkinson Pressure Bar
,”
Philos. Trans. Royal Soc.
,
240
(
821
), pp.
375
457
.
3.
Togami
,
T.
,
Baker
,
W.
, and
Forrestal
,
M.
,
1996
, “
A Split Hopkinson Bar Technique to Evaluate the Performance of Accelerometers
,”
ASME J. Appl. Mech.
,
63
(
2
), pp.
353
356
.
4.
Meng
,
J.
, and
Dasgupta
,
A.
,
2016
, “
Influence of Secondary Impact on Printed Wiring Assemblies—Part I: High Frequency “Breathing Mode” Deformations in the Printed Wiring Board
,”
ASME J. Electron. Packag.
,
138
(
1
), p.
010914
.
5.
Meng
,
J.
, and
Dasgupta
,
A.
,
2017
, “
Influence of Secondary Impact on Printed Wiring Assemblies—Part II: High Frequency “Breathing Mode” Deformations in the Printed Wiring Board
,”
ASME J. Electron. Packag.
,
139
(
3
), p.
031001
.
6.
Frew
,
D. J.
,
Forrestal
,
M. J.
, and
Chen
,
W.
,
2002
, “
Pulse Shaping Techniques for Testing Brittle Materials With a Split Hopkinson Pressure Bar
,”
Exp. Mech.
,
42
, pp.
93
106
.
7.
Xia
,
K.
,
Nasseri
,
M. H. B.
,
Mohanty
,
B.
,
Lu
,
F.
,
Chen
,
R.
, and
Luo
,
S. N.
,
2008
, “
Effects of Microstructures on Dynamic Compression of Barre Granite
,”
Int. J. Rock Mech. Min. Sci.
,
45
(
6
), pp.
879
887
.
8.
Yuan
,
K.
,
Guo
,
W.
,
Su
,
Y.
,
Lei
,
J.
, and
Guo
,
H.
,
2017
, “
Study on Several Key Problems in Shock Calibration of High-g Accelerometers Using Hopkinson Bar
,”
Sens. Actuators, A
,
258
, pp.
1
13
.
9.
Graff
,
K.
,
1975
,
Wave Motion in Elastic Solids
,
Dover Publications
,
New York
.
10.
Hussein
,
M.
,
Leamy
,
M.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
11.
Sun
,
H.
,
Du
,
X.
, and
Pai
,
P. F.
,
2010
, “
Theory of Metamaterial Beams for Broadband Vibration Absorption
,”
J. Intell. Mater. Syst. Struct.
,
21
(
11
), pp.
1085
1101
.
12.
Ma
,
P. S.
,
Lee
,
H. J.
, and
Kim
,
Y. Y.
,
2015
, “
Dispersion Suppression of Guided Elastic Waves by Anisotropic Metamaterial
,”
J. Acoust. Soc. Am.
,
13
, pp.
EL77
EL82
.
13.
Ruzzene
,
M.
,
Scarpa
,
F.
, and
Soranna
,
F.
,
2003
, “
Wave Beaming Effects in Two-Dimensional Cellular Structures
,”
Smart Mater. Struct.
,
12
(
3
), pp.
363
372
.
14.
Vila
,
J.
,
Pal
,
R.
, and
Ruzzene
,
M.
,
2017
, “
Observation of Topological Valley Modes in an Elastic Hexagonal Lattice
,”
Phys. Rev. B
,
96
(
13
).
15.
Bilal
,
O.
, and
Hussein
,
M.
,
2011
, “
Ultrawide Phononic Band Gap for Combined In-Plane and Out-of-Plane Waves
,”
Phys. Rev. E
,
84
(
6
).
16.
Sigmund
,
O.
, and
Jensen
,
J.
,
2003
, “
Systematic Design of Phononic Band Gap Materials and Structures Using Topology Optimization
,”
Philos. Trans. R. Soc., A
,
361
(
1806
), pp.
1001
1019
.
17.
Tan
,
K.
,
Huang
,
H.
, and
Sun
,
C.
,
2014
, “
Blast-Wave Impact Mitigation Using Negative Effective Mass Density Concept of Elastic Metamaterials
,”
Int. J. Impact Eng.
,
64
, pp.
20
29
.
18.
Kim
,
E.
,
Yang
,
J.
,
Hwang
,
H.
, and
Shul
,
C.
,
2017
, “
Impact and Blast Mitigation Using Locally Resonant Woodpile Metamaterials
,”
Int. J. Impact Eng.
,
101
, pp.
24
31
.
19.
Sigalas
,
M. M.
, and
Economou
,
E. N.
,
1992
, “
Elastic and Acoustic Wave Band Structure
,”
J. Sound Vib.
,
158
(
2
), pp.
377
382
.
20.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.
21.
Uhrig
,
R.
,
1966
, “
The Transfer Matrix Method Seen as one Method of Structural Analysis Among Others
,”
J. Sound Vib.
,
4
(
2
), pp.
136
148
.
22.
Doyle
,
J.
,
1998
,
Wave Propagation in Structures
,
Springer
,
New York
.
23.
Sugino
,
C.
,
Leadenham
,
S.
,
Ruzzene
,
M.
, and
Erturk
,
A.
,
2016
, “
On the Mechanism of Bandgap Formation in Locally Resonant Finite Elastic Metamaterials
,”
J. Appl. Phys.
,
120
(
13
), p.
134501
.
You do not currently have access to this content.