Abstract

Recent studies have shown that reconfigurable acoustic arrays inspired from rigid origami structures can be used to radiate and focus acoustic waves. Yet, there is a need for exploration of single-degree-of-freedom deployment to be integrated with such arrays for sake of tailoring wave focusing. This research explores a reconfigurable acoustic array inspired from a regular Miura-ori unit cell and threefold-symmetric Bricard linkage. The system focuses on acoustic waves and has single-degree-of-freedom motion when incorporated with a modified threefold-symmetric Bricard linkage. Three configurations of the array are analyzed where array facets that converge towards the center axis are considered to vibrate like baffled pistons and generate acoustic waves into the surrounding fluid. An analytical model is constructed to explore the near-field acoustic focusing behavior of the proposed acoustic array. The wave focusing capabilities of the array are verified through proof-of-principle experiments. The results show that the wave focusing of the array is influenced by the geometric parameters of the facets and the relative distance of facets to the center axis, in agreement with simplified ray acoustics estimates. These findings underscore the fundamental relationship between focusing sound radiators and geometric acoustics principles. The results encourage broader exploration of acoustic array designs inspired from integrated single-degree-of-freedom linkages and origami structures for sake of straightforward array deployment and reconfiguration.

References

1.
Chen
,
T.
,
Bilal
,
O. R.
,
Lang
,
R. J.
,
Daraio
,
C.
, and
Shea
,
K.
,
2019
, “
Autonomous Deployment of a Solar Panel Using Elastic Origami and Distributed Shape-Memory-Polymer Actuators
,”
Phys. Rev. Appl.
,
11
(
6
), p.
064069
.
2.
Pehrson
,
N. A.
,
Ames
,
D. C.
,
Smith
,
S. P.
,
Magleby
,
S. P.
, and
Arya
,
M.
,
2020
, “
Self-Deployable, Self-Stiffening, and Retractable Origami-Based Arrays for Spacecraft
,”
AIAA J.
,
58
(
7
), pp.
3221
3228
.
3.
Sim
,
Y. H.
,
Yun
,
M. J.
,
Lee
,
D. Y.
, and
Cha
,
S. I.
,
2021
, “
Origami-Foldable Tessellated Crystalline-Si Solar Cell Module With Metal Textile-Based Stretchable Connections
,”
Sol. Energy Mater. Sol. Cells
,
231
, p.
111318
.
4.
Kaddour
,
A.
,
Velez
,
C. A.
,
Hamza
,
M.
,
Brown
,
N. C.
,
Ynchausti
,
C.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Georgakopoulos
,
S. V.
,
2020
, “
A Foldable and Reconfigurable Monolithic Reflectarray for Space Applications
,”
IEEE Access
,
8
, pp.
219355
219366
.
5.
Hwang
,
M.
,
Kim
,
G.
,
Kim
,
S.
, and
Jeong
,
N. S.
,
2021
, “
Origami-Inspired Radiation Pattern and Shape Reconfigurable Dipole Array Antenna at C-Band for CubeSat Applications
,”
IEEE Trans. Antennas Propag.
,
69
(
5
), pp.
2697
2705
.
6.
Espinal
,
F. A.
,
Huff
,
G. H.
,
Pallampati
,
S.
,
Sessions
,
D.
,
Fuchi
,
K.
,
Bazzan
,
G.
,
Seiler
,
S. R.
,
Buskohl
,
P. R.
,
Cook
,
A. B.
, and
Gillman
,
A. S.
,
2020
, “
Circularly-Polarised Origami-Inspired Folding Patch Antenna Sub-Array
,”
IET Microw. Antennas Propag.
,
14
(
11
), pp.
1262
1271
.
7.
Banerjee
,
H.
,
Li
,
T. K.
,
Ponraj
,
G.
,
Kirthika
,
S. K.
,
Lim
,
C. M.
, and
Ren
,
H.
,
2020
, “
Origami-Layer-Jamming Deployable Surgical Retractor With Variable Stiffness and Tactile Sensing
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031010
.
8.
Langford
,
T.
,
Mohammed
,
A.
,
Essa
,
K.
,
Elshaer
,
A.
, and
Hassanin
,
H.
,
2021
, “
4D Printing of Origami Structures for Minimally Invasive Surgeries Using Functional Scaffold
,”
Appl. Sci.
,
11
(
1
), p.
332
.
9.
Sargent
,
B.
,
Butler
,
J.
,
Seymour
,
K.
,
Bailey
,
D.
,
Jensen
,
B.
,
Magleby
,
S.
, and
Howell
,
L.
,
2020
, “
An Origami-Based Medical Support System to Mitigate Flexible Shaft Buckling
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
041005
.
10.
Chauhan
,
M.
,
Chandler
,
J. H.
,
Jha
,
A.
,
Subramaniam
,
V.
,
Obstein
,
K. L.
, and
Valdastri
,
P.
,
2021
, “
An Origami-Based Soft Robotic Actuator for Upper Gastrointestinal Endoscopic Applications
,”
Front. Robot. AI
,
8
, p.
119
.
11.
Yi
,
J.
,
Chen
,
X.
,
Song
,
C.
,
Zhou
,
J.
,
Liu
,
Y.
,
Liu
,
S.
, and
Wang
,
Z.
,
2019
, “
Customizable Three-Dimensional-Printed Origami Soft Robotic Joint With Effective Behavior Shaping for Safe Interactions
,”
IEEE Trans. Robot.
,
35
(
1
), pp.
114
123
.
12.
Kim
,
Y.
,
Lee
,
Y.
, and
Cha
,
Y.
,
2021
, “
Origami Pump Actuator Based Pneumatic Quadruped Robot (OPARO)
,”
IEEE Access
,
9
, pp.
41010
41018
.
13.
Melancon
,
D.
,
Gorissen
,
B.
,
Garcia-Mora
,
C. J.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2021
, “
Multistable Inflatable Origami Structures at the Metre Scale
,”
Nature
,
592
(
7855
), pp.
545
550
.
14.
Balanis
,
C. A.
,
2016
,
Antenna Theory: Analysis and Design
,
Wiley
,
Hoboken, NJ
.
15.
Williams
,
E. G.
,
1999
,
Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography
,
Academic Press
,
San Diego, CA
.
16.
Kennedy
,
J. E.
,
2005
, “
High-Intensity Focused Ultrasound in the Treatment of Solid Tumors
,”
Nat. Rev.
,
5
(
4
), pp.
321
327
.
17.
Srinivas
,
V.
, and
Harne
,
R. L.
,
2020
, “
Acoustic Wave Focusing by Doubly Curved Origami-Inspired Arrays
,”
J. Intell. Mater. Syst. Struct.
,
31
(
8
), pp.
1041
1052
.
18.
Zou
,
C.
, and
Harne
,
R. L.
,
2020
, “
Deployable Tessellated Transducer Array for Ultrasound Focusing and Bio heat Generation in a Multilayer Environment
,”
Ultrasonics
,
104
, p.
106108
.
19.
Zhao
,
N.
,
Zou
,
C.
, and
Harne
,
R. L.
,
2021
, “
Partially Activated Reconfigurable Arrays to Guide Acoustic Waves
,”
J. Intell. Mater. Syst. Struct.
,
32
(
20
), pp.
2529
2540
.
20.
Zhao
,
N.
, and
Harne
,
R. L.
,
2021
, “
Reconfigurable Acoustic Arrays With Deployable Structure Based on a Hoberman-Miura System Synthesis
,”
ASME J. Mech. Des.
,
143
(
6
), p.
063301
.
21.
Lang
,
R. J.
,
Brown
,
N.
,
Ignaut
,
B.
,
Magleby
,
S.
, and
Howell
,
L.
,
2020
, “
Rigidly Foldable Thick Origami Using Designed-Offset Linkages
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021106
.
22.
Vlachaki
,
E.
, and
Liapi
,
K. A.
,
2021
, “
Folded Surface Elements Coupled With Planar Scissor Linkages: A Novel Hybrid Type of Deployable Structures
,”
Curved Layer. Struct.
,
8
(
1
), pp.
137
146
.
23.
Chen
,
Y.
,
Lv
,
W.
,
Peng
,
R.
, and
Wei
,
G.
,
2019
, “
Mobile Assemblies of Four-Spherical-4R-Integrated Linkages and the Associated Four-Crease-Integrated Rigid Origami Patterns
,”
Mech. Mach. Theory
,
142
, p.
103613
.
24.
Feng
,
H.
,
Peng
,
R.
,
Zang
,
S.
,
Ma
,
J.
, and
Chen
,
Y.
,
2020
, “
Rigid Foldability and Mountain-Valley Crease Assignments of Square-Twist Origami Pattern
,”
Mech. Mach. Theory
,
152
, p.
103947
.
25.
Chen
,
Y.
,
Feng
,
H.
,
Ma
,
J.
,
Peng
,
R.
, and
You
,
Z.
,
2016
, “
Symmetric Waterbomb Origami
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
472
(
2190
), p.
20150846
.
26.
Zhang
,
X.
, and
Chen
,
Y.
,
2018
, “
Mobile Assemblies of Bennett Linkages From Four-Crease Origami Patterns
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
474
(
2210
), p.
20170621
.
27.
Gu
,
Y.
,
Wei
,
G.
, and
Chen
,
Y.
,
2021
, “
Thick-Panel Origami Cube
,”
Mech. Mach. Theory
,
164
, p.
104411
.
28.
Wang
,
C.
,
Li
,
J.
, and
Zhang
,
D.
,
2021
, “
Optimization Design Method for Kirigami-Inspired Space Deployable Structures With Cylindrical Surfaces
,”
Appl. Math. Model.
,
89
, pp.
1575
1598
.
29.
Chen
,
Y.
,
You
,
Z.
, and
Tarnai
,
T.
,
2005
, “
Threefold-Symmetric Bricard Linkages for Deployable Structures
,”
Int. J. Solids Struct.
,
42
(
8
), pp.
2287
2301
.
30.
Yang
,
F.
,
You
,
Z.
, and
Chen
,
Y.
,
2020
, “
Foldable Hexagonal Structures Based on the Threefold-Symmetric Bricard Linkage
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011012
.
31.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
9
), pp.
3276
3281
.
32.
Harne
,
R. L.
, and
Lynd
,
D. T.
,
2016
, “
Origami Acoustics: Using Principles of Folding Structural Acoustics for Simple and Large Focusing of Sound Energy
,”
Smart Mater. Struct.
,
25
(
8
), p.
085031
.
33.
Zou
,
C.
, and
Harne
,
R. L.
,
2019
, “
Tailoring Reflected and Diffracted Wave Fields From Tessellated Acoustic Arrays by Origami Folding
,”
Wave Motion
,
89
, pp.
193
206
.
34.
Ocheltree
,
K. B.
, and
Frizzell
,
L. A.
,
1989
, “
Sound Field Calculation for Rectangular Sources
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
36
(
2
), pp.
242
248
.
You do not currently have access to this content.