Abstract

Wave propagations exhibit direction and frequency selectivity in two-dimensional (2D) periodic structures, which provides possibilities to regulate wave dispersion and bandgap properties. Most of current researches focus on regulations of 1D waves, and there are few works about active regulations of 2D waves, especially in the structures with strong nonlinearities that have remarkable influences on dispersions. In this work, two types of 2D periodic nonlinear lattice structures with piezoelectric springs, which include a monatomic and a diatomic structure, are designed to implement controllable dispersion and propagation direction of 2D waves. Considering the strong nonlinearities caused by the cubic spring, dynamic models of the wave propagations in the two kinds of periodic structures are established, and an improved incremental harmonic balance (IHB) method is developed to implement efficient and accurate calculations of the 2D wave propagation. Influences of active and structural parameters on dispersion and bandgap properties are comprehensively studied, and the regulation ability of the piezoelectric springs is demonstrated where the proportional voltage constant is the active control parameter with particle displacements as the feedback. Results also show that a piezoelectric modulated bandgap and a critical wave vector region are created by positive and negative proportional constants, respectively, which indicate that the structures can be used to filter a wide range of low-frequency long-wavelength noises and waves at particular directions. The properties predicted by the improved IHB method are verified by numerical experiments.

References

1.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
2.
Olsson
R. H.
, III
,
El-Kady
,
I. F.
,
Su
,
M. F.
,
Tuck
,
M. R.
, and
Fleming
,
J. G.
,
2008
, “
Microfabricated VHF Acoustic Crystals and Waveguides
,”
Sens. Actuators, A
,
145
, pp.
87
93
.
3.
Yu
,
D.
,
Wen
,
J.
,
Zhao
,
H.
,
Liu
,
Y.
, and
Wen
,
X.
,
2008
, “
Vibration Reduction by Using the Idea of Phononic Crystals in a Pipe-Conveying Fluid
,”
J. Sound Vib.
,
318
(
1–2
), pp.
193
205
.
4.
Liang
,
B.
,
Cheng
,
J.
,
Zhu
,
Y.
,
Zhu
,
X.
,
Zou
,
X.
, and
Yang
,
J.
,
2016
, “
Spatial Acoustic Modulator for Projecting High-Quality Holographic Image
,”
J. Acoust. Soc. Am.
,
140
(
4_Supplement
), pp.
3049
3049
.
5.
Lu
,
Y.
,
Wang
,
F.
, and
Ma
,
X.
,
2018
, “
Helicopter Interior Noise Reduction Using Compounded Periodic Struts
,”
J. Sound Vib.
,
435
, pp.
264
280
.
6.
Nassar
,
H.
,
Chen
,
H.
,
Norris
,
A. N.
,
Haberman
,
M. R.
, and
Huang
,
G. L.
,
2017
, “
Non-Reciprocal Wave Propagation in Modulated Elastic Metamaterials
,”
Proc. R. Soc. A
,
473
(
2202
), p.
20170188
.
7.
Li
,
Z. N.
,
Wang
,
Y. Z.
, and
Wang
,
Y. S.
,
2018
, “
Nonreciprocal Phenomenon in Nonlinear Elastic Wave Metamaterials With Continuous Properties
,”
Int. J. Solids Struct.
,
150
, pp.
125
134
.
8.
Hu
,
G.
,
Austin
,
A. C.
,
Sorokin
,
V.
, and
Tang
,
L.
,
2021
, “
Metamaterial Beam With Graded Local Resonators for Broadband Vibration Suppression
,”
Mech. Syst. Signal Process
,
146
, p.
106982
.
9.
Huang
,
Y.
,
Zhang
,
C. L.
, and
Chen
,
W. Q.
,
2014
, “
Tuning Band Structures of Two-Dimensional Phononic Crystals with Biasing Fields
,”
ASME J. Appl. Mech.
,
81
(
9
), p.
091008
.
10.
Shim
,
J.
,
Wang
,
P.
, and
Bertoldi
,
K.
,
2015
, “
Harnessing Instability-Induced Pattern Transformation to Design Tunable Phononic Crystals
,”
Int. J. Solids Struct.
,
58
, pp.
52
61
.
11.
Song
,
Y.
,
Feng
,
L.
,
Wen
,
J.
,
Yu
,
D.
, and
Wen
,
X.
,
2015
, “
Reduction of the Sound Transmission of a Periodic Sandwich Plate Using the Stop Band Concept
,”
Compos. Struct.
,
128
, pp.
428
436
.
12.
Ahn
,
Y. K.
,
Oh
,
J. H.
,
Ma
,
P. S.
, and
Kim
,
Y. Y.
,
2016
, “
Dispersion Analysis With 45 deg-Rotated Augmented Supercells and Applications in Phononic Crystal Design
,”
Wave Motion
,
61
, pp.
63
72
.
13.
Movchan
,
A. B.
,
Movchan
,
N. V.
, and
Haq
,
S.
,
2006
, “
Localised Vibration Modes and Stop Bands for Continuous and Discrete Periodic Structures
,”
Mater. Sci. Eng. A
,
431
(
1–2
), pp.
175
183
.
14.
Sievers
,
A. J.
, and
Takeno
,
S.
,
1988
, “
Intrinsic Localized Modes in Anharmonic Crystals
,”
Phys. Rev. Lett.
,
61
(
8
), pp.
970
973
.
15.
Vakakis
,
A. F.
,
King
,
M. E.
, and
Pearlstein
,
A. J.
,
1994
, “
Forced Localization in a Periodic Chain of Non-Linear Oscillators
,”
Int. J. Non Linear Mech.
,
29
(
3
), pp.
429
447
.
16.
Daraio
,
C.
,
Nesterenko
,
V. F.
,
Herbold
,
E. B.
, and
Jin
,
S.
,
2006
, “
Tunability of Solitary Wave Properties in One-Dimensional Strongly Nonlinear Phononic Crystals
,”
Phys. Rev. E
,
73
(
2
), p.
026610
.
17.
Frandsen
,
N. M.
, and
Jensen
,
J. S.
,
2017
, “
Modal Interaction and Higher Harmonic Generation in a Weakly Nonlinear, Periodic Mass–Spring Chain
,”
Wave Motion
,
68
, pp.
149
161
.
18.
Wang
,
J.
,
Zhou
,
W.
,
Huang
,
Y.
,
Lyu
,
C.
,
Chen
,
W.
, and
Zhu
,
W.
,
2018
, “
Controllable Wave Propagation in a Weakly Nonlinear Monoatomic Lattice Chain With Nonlocal Interaction and Active Control
,”
Appl. Math. Mech.
,
39
(
8
), pp.
1059
1070
.
19.
Wei
,
L. S.
,
Wang
,
Y. Z.
, and
Wang
,
Y. S.
,
2020
, “
Nonreciprocal Transmission of Nonlinear Elastic Wave Metamaterials by Incremental Harmonic Balance Method
,”
Int. J. Mech. Sci.
,
173
, p.
105433
.
20.
Manktelow
,
K. L.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Weakly Nonlinear Wave Interactions in Multi-Degree of Freedom Periodic Structures
,”
Wave Motion
,
51
(
6
), pp.
886
904
.
21.
Fang
,
X.
,
Wen
,
J.
,
Bonello
,
B.
,
Yin
,
J.
, and
Yu
,
D.
,
2017
, “
Ultra-Low and Ultra-Broad-Band Nonlinear Acoustic Metamaterials
,”
Nat. Commun.
,
8
(
1
), p.
1288
.
22.
Zou
,
X. Y.
,
Liang
,
B.
,
Yuan
,
Y.
,
Zhu
,
X. F.
, and
Cheng
,
J. C.
,
2013
, “
Controllable Acoustic Rectification in One-Dimensional Piezoelectric Composite Plates
,”
J. Appl. Phys.
,
114
(
16
), p.
164504
.
23.
Zhang
,
Q.
,
Chen
,
Y.
,
Zhang
,
K.
, and
Hu
,
G.
,
2019
, “
Programmable Elastic Valley Hall Insulator With Tunable Interface Propagation Routes
,”
Extreme Mech. Lett.
,
28
, pp.
76
80
.
24.
Harne
,
R. L.
, and
Lynd
,
D. T.
,
2016
, “
Origami Acoustics: Using Principles of Folding Structural Acoustics for Simple and Large Focusing of Sound Energy
,”
Smart Mater. Struct.
,
25
(
8
), p.
085031
.
25.
Yang
,
W. P.
, and
Chen
,
L. W.
,
2007
, “
The Tunable Acoustic Band Gaps of Two-Dimensional Phononic Crystals With a Dielectric Elastomer Cylindrical Actuator
,”
Smart Mater. Struct.
,
17
(
1
), p.
015011
.
26.
Ding
,
R.
,
Su
,
X.
,
Zhang
,
J.
, and
Gao
,
Y.
,
2014
, “
Tunability of Longitudinal Wave Band Gaps in One Dimensional Phononic Crystal With Magnetostrictive Material
,”
J. Appl. Phys.
,
115
(
7
), p.
074104
.
27.
Ren
,
T.
,
Liu
,
C.
,
Li
,
F.
, and
Zhang
,
C.
,
2020
, “
Active Tuning of the Vibration Band Gap Characteristics of Periodic Laminated Composite Metamaterial Beams
,”
J. Intell. Mater. Syst. Struct.
,
31
(
6
), pp.
843
859
.
28.
Wang
,
Y. Z.
,
Li
,
F. M.
, and
Wang
,
Y. S.
,
2016
, “
Influences of Active Control on Elastic Wave Propagation in a Weakly Nonlinear Phononic Crystal With a Monoatomic Lattice Chain
,”
Int. J. Mech. Sci.
,
106
, pp.
357
362
.
29.
Wang
,
Y. Z.
, and
Wang
,
Y. S.
,
2018
, “
Active Control of Elastic Wave Propagation in Nonlinear Phononic Crystals Consisting of Diatomic Lattice Chain
,”
Wave Motion
,
78
, pp.
1
8
.
30.
Narisetti
,
R. K.
,
Ruzzene
,
M.
, and
Leamy
,
M. J.
,
2011
, “
A Perturbation Approach for Analyzing Dispersion and Group Velocities in Two-Dimensional Nonlinear Periodic Lattices
,”
ASME J. Vib. Acoust.
,
133
(
6
), p.
061020
.
31.
Narisetti
,
R. K.
,
Ruzzene
,
M.
, and
Leamy
,
M. J.
,
2012
, “
Study of Wave Propagation in Strongly Nonlinear Periodic Lattices Using a Harmonic Balance Approach
,”
Wave Motion
,
49
(
2
), pp.
394
410
.
32.
Wang
,
X. F.
, and
Zhu
,
W. D.
,
2015
, “
A Modified Incremental Harmonic Balance Method Based on the Fast Fourier Transform and Broyden's Method
,”
Nonlinear Dyn.
,
81
(
1–2
), pp.
981
989
.
33.
Wang
,
X.
,
Zhu
,
W.
, and
Zhao
,
X.
,
2019
, “
An Incremental Harmonic Balance Method With a General Formula of Jacobian Matrix and a Direct Construction Method in Stability Analysis of Periodic Responses of General Nonlinear Delay Differential Equations
,”
ASME J. Appl. Mech.
,
86
(
6
), p.
061011
.
34.
Wang
,
X.
,
Zhu
,
W.
, and
Liu
,
M.
,
2020
, “
Steady-State Periodic Solutions of the Nonlinear Wave Propagation Problem of a one-Dimensional Lattice Using a New Methodology With an Incremental Harmonic Balance Method That Handles Time Delays
,”
Nonlinear Dyn.
,
100
(
2
), pp.
1457
1467
.
35.
Song
,
M.
, and
Zhu
,
W.
,
2021
, “
Elastic Wave Propagation in Strongly Nonlinear Lattices and Its Active Control
,”
ASME J. Appl. Mech.
,
88
(
7
), p.
071003
.
You do not currently have access to this content.