Abstract

This article introduces damping amplifiers integrated into the core material of conventional nonlinear friction base isolators to improve their vibration attenuation capabilities and mitigate their shortcomings. Four new types of damping amplifier friction bearings are introduced: levered, nested, compound, and damping. The H2 optimization strategy is utilized to obtain the closed-form analytical solution for the optimized designed parameters. The analytical investigation confirms the efficiency of the recently obtained closed-form equations for the optimal design parameters. The frequency response function was used to develop closed-form formulas for the isolator and main structure’s dynamic responses. The harmonic and random white noise excitation served as the basis. Furthermore, numerical analysis by considering real earthquake load has confirmed the novel isolators’ efficiency. The vibration reduction capacities of the H2 optimized damping amplifier friction bearings, compound damping amplifier friction bearings, nested damping amplifier friction bearings, and levered damping amplifier friction bearings are 76.1% superior to the optimum conventional base isolator. These findings demonstrate how the proposed designs may improve structural resistance to dynamic loads.

References

1.
Talaeitaba
,
S. B.
,
Safaie
,
M.
, and
Zamani
,
R.
,
2021
, “Development and Application of a New Base Isolation System in Low-Rise Buildings,”
Structures
,
S. B.
Talaeitaba
,
M.
Safaie
, and
R.
Zamani
, eds., Vol.
34
,
Elsevier
, pp.
1684
1709
.
2.
Dong
,
W.
,
Shi
,
Y.
,
Wang
,
Q.
,
Wang
,
Y.
, and
Yan
,
J.-B.
,
2023
, “
Development of a Long-Period Vertical Base Isolation Device With Variable Stiffness for Steel Frame Structures
,”
Soil Dyn. Earthquake Eng.
,
164
, p.
107638
.
3.
Jing
,
W.
,
Feng
,
J.
,
Wang
,
S.
, and
Song
,
S.
,
2023
, “Failure Probability of a Liquid Storage Tank With Three-Dimensional Base-Isolation Under Earthquake Action,”
Structures
,
S. B.
Talaeitaba
,
M.
Safaie
, and
R.
Zamani
, eds., Vol.
58
,
Elsevier
, p.
105633
.
4.
Baidya
,
S.
, and
Roy
,
B. K.
,
2023
, “
Comparative Seismic Performance of Building With Cu-Al-Be and Ni-Ti SMARB Base Isolation System Using Particle Swarm Optimization
,”
J. Struct. Integrity Maint.
,
8
(
3
), pp.
133
139
.
5.
Zhang
,
C.
,
Duan
,
C.
, and
Sun
,
L.
,
2024
, “
Inter-storey Isolation Versus Base Isolation Using Friction Pendulum Systems
,”
Int. J. Struct. Stab. Dyn.
,
24
(
2
), p.
2450022
.
6.
Chen
,
P.
,
Wang
,
B.
,
Dai
,
K.
, and
Li
,
T.
,
2022
, “
Analytical and Numerical Investigations of Base Isolation System With Negative Stiffness Devices
,”
Eng. Struct.
,
268
, p.
114799
.
7.
Zhao
,
C.
,
Zeng
,
C.
,
Huang
,
H.
,
Dai
,
J.
,
Bai
,
W.
,
Wang
,
J.
, and
Mo
,
Y.
,
2021
, “
Preliminary Study on the Periodic Base Isolation Effectiveness and Experimental Validation
,”
Eng. Struct.
,
226
, p.
111364
.
8.
Nepal
,
S.
, and
Saitoh
,
M.
,
2020
, “
Improving the Performance of Conventional Base Isolation Systems by an External Variable Negative Stiffness Device Under Near-Fault and Long-Period Ground Motions
,”
Earthquake Eng. Eng. Vib.
,
19
, pp.
985
1003
.
9.
De Domenico
,
D.
,
Gandelli
,
E.
, and
Quaglini
,
V.
,
2020
, “
Effective Base Isolation Combining Low-Friction Curved Surface Sliders and Hysteretic Gap Dampers
,”
Soil Dyn. Earthquake Eng.
,
130
, p.
105989
.
10.
Zhang
,
C.
, and
Ali
,
A.
,
2021
, “
The Advancement of Seismic Isolation and Energy Dissipation Mechanisms Based on Friction
,”
Soil Dyn. Earthquake Eng.
,
146
, p.
106746
.
11.
Masnata
,
C.
,
Di Matteo
,
A.
,
Adam
,
C.
, and
Pirrotta
,
A.
,
2021
, “
Assessment of the Tuned Mass Damper Inerter for Seismic Response Control of Base-Isolated Structures
,”
Struct. Control Health Monit.
,
28
(
2
), p.
e2665
.
12.
Islam
,
N. U.
, and
Jangid
,
R.
,
2023
, “
Optimum Parameters and Performance of Negative Stiffness and Inerter Based Dampers for Base-Isolated Structures
,”
Bull. Earthquake Eng.
,
21
(
3
), pp.
1411
1438
.
13.
Zamani
,
A.-A.
, and
Etedali
,
S.
,
2022
, “
A New Framework of Multi-objective BELBIC for Seismic Control of Smart Base-Isolated Structures Equipped With MR Dampers
,”
Eng. Comput.
,
38
(
4
), pp.
3759
3772
.
14.
Chowdhury
,
S.
,
Banerjee
,
A.
, and
Adhikari
,
S.
,
2024
, “
Enhancing Seismic Resilience of Nonlinear Structures Through Optimally Designed Additional Mass Dampers
,”
Int. J. Non-Linear Mech.
,
162
, p.
104717
.
15.
Chowdhury
,
S.
,
Banerjee
,
A.
, and
Adhikari
,
S.
,
2023
, “
The Exact Closed-Form Expressions for Optimum Inertial Amplifier Coupled Nonlinear Friction Bearing Isolators
,”
International Conference on Nonlinear Dynamics and Applications
,
Rome, Italy
,
June 18–22
,
Springer
, pp.
165
176
.
16.
Chowdhury
,
S.
,
Banerjee
,
A.
, and
Adhikari
,
S.
,
2024
, “
From Impact to Control: Inertially Amplified Friction Bearings
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A: Civ. Eng.
,
10
(
4
), p.
04024071
.
17.
Smith
,
M. C.
,
2002
, “
Synthesis of Mechanical Networks: The Inerter
,”
IEEE Trans. Autom. Contr.
,
47
(
10
), pp.
1648
1662
.
18.
Berton
,
S.
, and
Bolander
,
J. E.
,
2005
, “
Amplification System for Supplemental Damping Devices in Seismic Applications
,”
J. Struct. Eng.
,
131
(
6
), pp.
979
983
.
19.
Londoño
,
J. M.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2015
, “
Using a Damper Amplification Factor to Increase Energy Dissipation in Structures
,”
Eng. Struct.
,
84
, pp.
162
171
. .
20.
Taniker
,
S.
, and
Yilmaz
,
C.
,
2013
, “
Phononic Gaps Induced by Inertial Amplification in BCC and FCC Lattices
,”
Phys. Lett. A
,
377
(
31–33
), pp.
1930
1936
.
21.
Chowdhury
,
S.
,
Banerjee
,
A.
, and
Adhikari
,
S.
,
2024
, “
The Nonlinear Negative Stiffness Inertial Amplifier Base Isolators for Dynamic Systems
,”
Mech. Based Des. Struct. Mach.
,
52
(
11
), pp.
1
40
.
22.
Chowdhury
,
S.
,
Banerjee
,
A.
, and
Adhikari
,
S.
,
2024
, “
The Optimal Nonlinear Inertial Amplifier Friction Bearings for Liquid Storage Tanks: An Analytical Study
,”
Int. J. Dyn. Control
,
12
, pp.
1
12
.
23.
Adhikari
,
S.
, and
Banerjee
,
A.
,
2022
, “
Enhanced Low-Frequency Vibration Energy Harvesting With Inertial Amplifiers
,”
J. Intell. Mater. Syst. Struct.
,
33
(
6
), pp.
822
838
.
24.
Banerjee
,
A.
,
Adhikari
,
S.
, and
Hussein
,
M. I.
,
2021
, “
Inertial Amplification Band-Gap Generation by Coupling a Levered Mass With a Locally Resonant Mass
,”
Int. J. Mech. Sci.
,
207
, p.
106630
.
25.
Ma
,
H.
,
Cheng
,
Z.
,
Shi
,
Z.
, and
Marzani
,
A.
,
2023
, “
Structural Vibration Mitigation Via an Inertial Amplification Mechanism Based Absorber
,”
Eng. Struct.
,
295
, p.
116764
.
26.
Yilmaz
,
C.
,
Hulbert
,
G. M.
, and
Kikuchi
,
N.
,
2007
, “
Phononic Band Gaps Induced by Inertial Amplification in Periodic Media
,”
Phys. Rev. B Condens. Matter Mater. Phys.
,
76
(
5
), p.
054309
.
27.
Chowdhury
,
S.
,
Banerjee
,
A.
, and
Adhikari
,
S.
,
2024
, “
Enhancing Seismic Resilience of Structures Through Optimally Designed Nonlinear Negative Stiffness Base Isolators: Exact Closed-Form Expressions
,”
Nonlinear Dyn.
,
112
(
18
), pp.
15833
15856
.
28.
Kang
,
X.
,
Wang
,
X.
,
Zhang
,
A.
, and
Xia
,
G.
,
2024
, “
Low Frequency Vibration Energy Harvesting of Piezoelectric Vibration Systems With an Adjustable Device and Inertial Amplifier Device
,”
J. Vib. Eng. Technol.
,
12
, pp.
1
25
.
29.
Zhao
,
C.
,
Zhang
,
K.
,
Zhao
,
P.
, and
Deng
,
Z.
,
2023
, “
Finite-Amplitude Nonlinear Waves in Inertial Amplification Metamaterials: Theoretical and Numerical Analyses
,”
J. Sound Vib.
,
560
, p.
117802
.
30.
Zhao
,
Z.
,
Chen
,
Q.
,
Zhang
,
R.
,
Pan
,
C.
, and
Jiang
,
Y.
,
2020
, “
Energy Dissipation Mechanism of Inerter Systems
,”
Int. J. Mech. Sci.
,
184
, p.
105845
.
31.
Matsagar
,
V. A.
, and
Jangid
,
R.
,
2003
, “
Seismic Response of Base-Isolated Structures During Impact With Adjacent Structures
,”
Eng. Struct.
,
25
(
10
), pp.
1311
1323
.
32.
Kiureghian
,
A. D.
, and
Neuenhofer
,
A.
,
1992
, “
Response Spectrum Method for Multi-support Seismic Excitations
,”
Earthquake Eng. Struct. Dyn.
,
21
(
8
), pp.
713
740
.
You do not currently have access to this content.